Skip to main content

In vitro antioxidant potential of different parts of Solanum surattense Burm. f.

Abstract

The present investigation has been carried out to evaluate the antioxidant properties of acetone and methanol extracts of Solanum surattense leaves, stem, fruits, and roots by various in vitro systems. Higher levels of total phenolics (28.9 g/100 g extract) and tannins (18.7 g/100 g extract) were observed in acetone extract of roots. Results indicated that, the acetone extract of S. surattense roots exhibited higher activity against DPPH, ABTS•+, OH radical scavenging, and phosphomolybdenum reduction. Methanol extract of the roots contained relatively higher level of ferric reducing/antioxidant power, whereas methanol extract of stem showed higher metal chelation. At a concentration of 200 μg in the final reaction mixture, both the acetone and methanol extracts of roots were found to have recognizable peroxidation inhibition and antihemolytic activity. Owing to these antioxidant properties, the above plant can be considered as natural source of dietary antioxidants and nutraceuticals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110: 571–583 (2008)

    Article  CAS  Google Scholar 

  2. 2.

    Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K. Taniguchi K, Tsuda S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res. — Gen. Tox. En. 519: 103–109 (2002)

    Article  CAS  Google Scholar 

  3. 3.

    Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolics compounds of 112 Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157–2184 (2004)

    Article  CAS  Google Scholar 

  4. 4.

    Prajapati ND, Purohit SS, Sharma AK, Kumar T. Medicinal Plants. Agrobios, Agro House, Jodhpur, India. p. 481 (2003)

    Google Scholar 

  5. 5.

    Sharma R. Medicinal Plants of India. An Encyclopaedia. Daya Publishing House, Deva Ram Park, Trinagar, Delhi, India. pp. 232–233 (2003)

    Google Scholar 

  6. 6.

    Pullaiah T. Medicinal Plants in India. Vol. II. Regency Publications, New Delhi, India. pp. 474–475 (2002)

    Google Scholar 

  7. 7.

    Siddhuraju R, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic orgins of drumstick tree (Moringa olifera Lam.) leaves. J. Agr. Food Chem. 51: 2144–2155 (2003)

    Article  CAS  Google Scholar 

  8. 8.

    Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agr. Food Chem. 48: 3396–3402 (2000)

    Article  CAS  Google Scholar 

  9. 9.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  10. 10.

    Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)

    Article  CAS  Google Scholar 

  11. 11.

    Prieto P, Pineda M, Aguilar M. Spectophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269: 337–341 (1999)

    Article  CAS  Google Scholar 

  12. 12.

    Blios MS. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199–1200 (1958)

    Article  Google Scholar 

  13. 13.

    Klein SM, Cohen G, Cederbaum AI. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical generating system. Biochemistry 20: 6006–6012 (1991)

    Article  Google Scholar 

  14. 14.

    Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 61: 928–931 (1984)

    Article  CAS  Google Scholar 

  15. 15.

    Naim M, Gestener B, Bondi A, Birk Y. Antioxidant and antihemolytic activities of soyabean isoflavones J. Agr. Food Chem. 24: 1174–1177 (1976)

    Article  CAS  Google Scholar 

  16. 16.

    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954–3962 (1999)

    Article  Google Scholar 

  17. 17.

    Prior RL, Wu XL, Schaich K. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290–4302 (2005)

    Article  CAS  Google Scholar 

  18. 18.

    Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887–1892 (1998)

    Article  CAS  Google Scholar 

  19. 19.

    Ebrahimzadeh MA, Poumorad F, Bekhradnia AR. Iron chelating activity, phenol, and flavonoid content of some medicinal plants from Iran. Afr. J. Biotechnol. 7: 3188–3192 (2008)

    CAS  Google Scholar 

  20. 20.

    Loo AY, Jain K, Darah I. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 107: 1151–1160 (2008)

    Article  CAS  Google Scholar 

  21. 21.

    Gadow A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α tocopherol, BHT, and BHA. J. Agr. Food Chem. 45: 632–638 (1997)

    Article  Google Scholar 

  22. 22.

    Sun Z, Zhang L, Zhang B, Niu T. Structural characterisation and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens. Food Chem. 118: 675–680 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    Wettasinghe M, Shahidi F. Antioxidant and free radical scavenging properties of ethanolic extracts of defatted borage (Borago officinallis L.) seeds. Food Chem. 67: 409–414 (1999)

    Article  Google Scholar 

  24. 24.

    Djeridane A, Yous M, Nadjemi B, Vidal N, Lesgards JF, Stocker P. Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur. Food Res. Technol. 224: 801–809 (2006)

    Article  Google Scholar 

  25. 25.

    Manian R, Anusuya N, Siddhuraju P, Manian S. The antioxidant and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem. 107: 1000–1007 (2008)

    Article  CAS  Google Scholar 

  26. 26.

    Sowndhararajan K, Joseph JM, Arunachalam K, Manian, S. Evaluation of Merremia tridentata (L.) Hallier f. for in vitro antioxidant activity. Food. Sci. Biotechnol. 19: 663–669 (2010)

    Article  CAS  Google Scholar 

  27. 27.

    Souza JNS, Silva EM, Loir A, Rus JF, Rogez H, Larondelle Y. Antioxidant capacity of four polyphenol-rich Amazonian plant extracts. A correlation study using chemical and biological in vitro assays. Food Chem. 106: 331–339 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sellamuthu Manian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joseph, J.M., Sowndhararajan, K., Rajendrakumaran, D. et al. In vitro antioxidant potential of different parts of Solanum surattense Burm. f.. Food Sci Biotechnol 20, 477–483 (2011). https://doi.org/10.1007/s10068-011-0066-x

Download citation

Keywords

  • antioxidant
  • total phenolic
  • ferric-reducing/antioxidant power (FRAP)
  • antihemolytic
  • Solanum surattense