Skip to main content

Anti-diabetic effect of watermelon (Citrullus vulgaris Schrad) on Streptozotocin-induced diabetic mice

Abstract

The anti-diabetic potential of watermelon (Citrullus vulgaris Schrad) was evaluated in vivo. ICR mice were fed experimental diet containing none, 10% watermelon flesh powder (WM-P) or 1% watermelon rind ethanol extract (WM-E). At the end of 4 weeks, mice were administrated with streptozotocin (40 mg/kg, i.p.) for 5 consecutive days to induce diabetes. Supplementation with WM-E significantly decreased blood glucose level and increased serum insulin levels. Feeding of WM-P also induced moderate changes but those were not statistically significant. Immunohistochemical analysis showed watermelon effectively protected pancreatic cells death. These results suggest that watermelon has a beneficial effect on diabetes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabet. Med. 14(Suppl. 5): S1–S85 (1997)

    Google Scholar 

  2. 2.

    Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemoth. Rep. 29: 91–98 (1963)

    Google Scholar 

  3. 3.

    Bhattacharya G. On the protection against alloxan diabetes by hexoses. Science 120: 841–843 (1954)

    Article  CAS  Google Scholar 

  4. 4.

    Schein PS, Rakieten N, Cooney DA, Davis R, Vernon ML. Streptozotocin diabetes in monkeys and dogs, and its prevention by nicotinamide. Proc. Soc. Exp. Biol. Med. 143: 514–518 (1973)

    CAS  Google Scholar 

  5. 5.

    Matkovics B, Kotorman M, Varga IS, Hai DQ, Varga C. Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol. Hung. 85: 29–38 (1997)

    CAS  Google Scholar 

  6. 6.

    Rimando AM, Perkins-Veazie PM. Determination of citrulline in watermelon rind. J. Chromatogr. A 1078: 196–200 (2005)

    Article  CAS  Google Scholar 

  7. 7.

    Haslam DW, James WP. Obesity. Lancet 366: 1197–1209 (2005)

    Article  Google Scholar 

  8. 8.

    Wu G, Morris SM Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336(Pt. 1): 1–17 (1998)

    CAS  Google Scholar 

  9. 9.

    Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G. Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr. 134: 600–608 (2004)

    CAS  Google Scholar 

  10. 10.

    Bohm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agr. Food Chem. 50: 221–226 (2002)

    Article  Google Scholar 

  11. 11.

    Holden JM EA, Beecher GR, Marilyn Buzzard I, Bhagwat S, Davis CS, Douglass LW, Gebhardt SG, Haytowitz D, Schakel S. Carotenoid content of U.S. foods: An update of the database. J. Food Compos. Anal. 12: 28–30 (1999)

    Article  Google Scholar 

  12. 12.

    Sandalio LM, Lopez-Huertas E, Bueno P, Del Rio LA. Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radical Res. 26: 187–194 (1997)

    Article  CAS  Google Scholar 

  13. 13.

    Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J. Nutr. 137: 2680–2685 (2007)

    CAS  Google Scholar 

  14. 14.

    Rafi MM, Yadav PN, Reyes M. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J. Food Sci. 72: S069–S074 (2007)

    Article  Google Scholar 

  15. 15.

    Dhanotia R, Chauhan NS, Saraf DK, Dixit VK. Effect of Citrullus colocynthis Schrad fruits on testosterone-induced alopecia. Nat. Prod. Res. 16: 1–12 (2009)

    Article  Google Scholar 

  16. 16.

    Daradka H, Almasad MM, Qazan W, El-Banna NM, Samara OH. Hypolipidaemic effects of Citrullus colocynthis L. in rabbits. Pak. J. Biol. Sci. 10: 2768–2771 (2007)

    Article  Google Scholar 

  17. 17.

    Ojewole JA. Hypoglycemic effect of Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] stem-bark aqueous extract in rats. Phytomedicine 10: 675–681 (2003)

    Article  CAS  Google Scholar 

  18. 18.

    Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: An overview. J. Cardiovasc. Pharmacol. 34: 879–886 (1999)

    Article  CAS  Google Scholar 

  19. 19.

    Collins JK, Wu G, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, Clevidence BA. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 23: 261–266 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taeyoul Ha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahn, J., Choi, W., Kim, S. et al. Anti-diabetic effect of watermelon (Citrullus vulgaris Schrad) on Streptozotocin-induced diabetic mice. Food Sci Biotechnol 20, 251–254 (2011). https://doi.org/10.1007/s10068-011-0034-5

Download citation

Keywords

  • watermelon (Citrullus vulgaris Schrad)
  • antidiabetic
  • streptozotocin
  • insulin