Food Science and Biotechnology

, Volume 20, Issue 1, pp 251–254 | Cite as

Anti-diabetic effect of watermelon (Citrullus vulgaris Schrad) on Streptozotocin-induced diabetic mice

Research Note

Abstract

The anti-diabetic potential of watermelon (Citrullus vulgaris Schrad) was evaluated in vivo. ICR mice were fed experimental diet containing none, 10% watermelon flesh powder (WM-P) or 1% watermelon rind ethanol extract (WM-E). At the end of 4 weeks, mice were administrated with streptozotocin (40 mg/kg, i.p.) for 5 consecutive days to induce diabetes. Supplementation with WM-E significantly decreased blood glucose level and increased serum insulin levels. Feeding of WM-P also induced moderate changes but those were not statistically significant. Immunohistochemical analysis showed watermelon effectively protected pancreatic cells death. These results suggest that watermelon has a beneficial effect on diabetes.

Keywords

watermelon (Citrullus vulgaris Schrad) antidiabetic streptozotocin insulin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabet. Med. 14(Suppl. 5): S1–S85 (1997)Google Scholar
  2. 2.
    Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemoth. Rep. 29: 91–98 (1963)Google Scholar
  3. 3.
    Bhattacharya G. On the protection against alloxan diabetes by hexoses. Science 120: 841–843 (1954)CrossRefGoogle Scholar
  4. 4.
    Schein PS, Rakieten N, Cooney DA, Davis R, Vernon ML. Streptozotocin diabetes in monkeys and dogs, and its prevention by nicotinamide. Proc. Soc. Exp. Biol. Med. 143: 514–518 (1973)Google Scholar
  5. 5.
    Matkovics B, Kotorman M, Varga IS, Hai DQ, Varga C. Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol. Hung. 85: 29–38 (1997)Google Scholar
  6. 6.
    Rimando AM, Perkins-Veazie PM. Determination of citrulline in watermelon rind. J. Chromatogr. A 1078: 196–200 (2005)CrossRefGoogle Scholar
  7. 7.
    Haslam DW, James WP. Obesity. Lancet 366: 1197–1209 (2005)CrossRefGoogle Scholar
  8. 8.
    Wu G, Morris SM Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336(Pt. 1): 1–17 (1998)Google Scholar
  9. 9.
    Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G. Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr. 134: 600–608 (2004)Google Scholar
  10. 10.
    Bohm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agr. Food Chem. 50: 221–226 (2002)CrossRefGoogle Scholar
  11. 11.
    Holden JM EA, Beecher GR, Marilyn Buzzard I, Bhagwat S, Davis CS, Douglass LW, Gebhardt SG, Haytowitz D, Schakel S. Carotenoid content of U.S. foods: An update of the database. J. Food Compos. Anal. 12: 28–30 (1999)CrossRefGoogle Scholar
  12. 12.
    Sandalio LM, Lopez-Huertas E, Bueno P, Del Rio LA. Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radical Res. 26: 187–194 (1997)CrossRefGoogle Scholar
  13. 13.
    Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J. Nutr. 137: 2680–2685 (2007)Google Scholar
  14. 14.
    Rafi MM, Yadav PN, Reyes M. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J. Food Sci. 72: S069–S074 (2007)CrossRefGoogle Scholar
  15. 15.
    Dhanotia R, Chauhan NS, Saraf DK, Dixit VK. Effect of Citrullus colocynthis Schrad fruits on testosterone-induced alopecia. Nat. Prod. Res. 16: 1–12 (2009)CrossRefGoogle Scholar
  16. 16.
    Daradka H, Almasad MM, Qazan W, El-Banna NM, Samara OH. Hypolipidaemic effects of Citrullus colocynthis L. in rabbits. Pak. J. Biol. Sci. 10: 2768–2771 (2007)CrossRefGoogle Scholar
  17. 17.
    Ojewole JA. Hypoglycemic effect of Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] stem-bark aqueous extract in rats. Phytomedicine 10: 675–681 (2003)CrossRefGoogle Scholar
  18. 18.
    Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: An overview. J. Cardiovasc. Pharmacol. 34: 879–886 (1999)CrossRefGoogle Scholar
  19. 19.
    Collins JK, Wu G, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, Clevidence BA. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 23: 261–266 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Functional Food Technology Research Group, Research Division for Emerging Innovative TechnologyKorea Food Research InstituteSeongnam, GyeonggiKorea
  2. 2.Deaprtment of Home Economics, College of Natural ScienceKorea National Open UniversitySeoulKorea

Personalised recommendations