Skip to main content
Log in

Effects of fermented milk peptides supplement on blood pressure and vascular function in spontaneously hypertensive rats

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effects of fermented milk peptides (FMP) in spontaneously hypertensive rats (SHR). Systolic blood pressure (SBP) and the angiotensin-converting enzyme (ACE) activity were significantly ameliorated in FMP (10 mg/kg BW/day) group compared to those of the skimmed milk or captopril (CAP, 50 mg/kg BW/day) groups, respectively. The higher plasma nitric oxide (NO) level and the reduced aortic thickness were found in the FMP and CAP groups versus those in the control group, respectively. In conclusion, fermented milk products containing tripeptides have been shown to be a well-tolerated dietary option against mild hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: Current and future pharmacological targets. J. Pharm. Sci. 99: 6–38 (2005)

    Article  CAS  Google Scholar 

  2. Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J. Pharm. Sci. 100: 391–397 (2006)

    Article  CAS  Google Scholar 

  3. Mitchell GF, Dunlap ME, Warnica W, Ducharme A, Arnold JM, Tardif JC, Solomon SD, Domanski MJ, Jablonski KA, Rice MM, Pfeffer MA. Long-term trandolapril treatment is associated with reduced aortic stiffness: The prevention of events with angiotensin-converting enzyme inhibition hemodynamic substudy. Hypertension 49: 1271–1277 (2007)

    Article  CAS  Google Scholar 

  4. Akiba Y, Yamaguchi N, Amano H, Fujii T. Role of nitric oxide in the control of blood pressure in young and adult spontaneously hypertensive rats. Clin. Exp. Pharmacol. P. 22: 142–143 (1995)

    Article  Google Scholar 

  5. Trachtman H, Futterweit S, Singhal P. Nitric oxide modulates the synthesis of extracellular matrix proteins in cultured rat mesangial cells. Biochem. Bioph. Res. Co. 207: 120–125 (1995)

    Article  CAS  Google Scholar 

  6. Cruzado M, Castro C, Risler N, Miatello R. Changes of inducible nitric oxide synthase in aortic cells during the development of hypertension: Effect of angiotensin II. Biocell 26: 61–67 (2002)

    CAS  Google Scholar 

  7. Israili Z, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann. Intern. Med. 117: 234-242 (1992)

    Google Scholar 

  8. Webster J, Koch HF. Aspects of tolerability of centrally acting antihypertensive drugs. J. Cardiovasc. Pharm. 3: 49–54 (1996)

    Google Scholar 

  9. Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 47: 171–182 (2008)

    Article  Google Scholar 

  10. Kohama Y, Oka H, Kayamori Y, Tsujikawa K, Mimura T, Nagase Y, Satake M. Potent synthetic analogues of angiotensin-converting enzyme inhibitors derived from tuna muscle. Agr. Biol. Chem. Tokyo 55: 2169–2170 (1991)

    CAS  Google Scholar 

  11. Seppo L, Jauhiainen T, Poussa T, Korpela R. A fermented milk high in bioactive peptides has a blood pressure lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77: 326–330 (2003)

    CAS  Google Scholar 

  12. Gouda KGM, Gowda LR, Rao AG, Prakash V. Angiotensin Iconverting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J. Agr. Food Chem. 54: 4568–4573 (2006)

    Article  CAS  Google Scholar 

  13. Majumder K, Wu J. Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. J. Agr. Food Chem. 57: 471–477 (2009)

    Article  CAS  Google Scholar 

  14. Jimsheena VK, Gowda LR. Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: Structure-activity relationship. Peptides 316: 1165–1176 (2010)

    Article  Google Scholar 

  15. Masuda O, Nakamura Y, Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J. Nutr. 126: 1363–1368 (1996)

    Google Scholar 

  16. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Tanaka T. Purification and characterization of angiotensin Iconverting enzyme inhibitors from sour milk. J. Dairy Sci. 78: 777–783 (1995)

    Article  CAS  Google Scholar 

  17. Hata Y, Yamamoto M, Ohni M. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64: 767–771 (1996)

    CAS  Google Scholar 

  18. Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J. Am. Coll. Nutr. 24: 257–265 (2005)

    Google Scholar 

  19. Swislocki ALM, Kinney LaPier TL, Khuu DT, Fann KY, Tait M, Rodnick KJ. Metabolic, hemodynamic, and cardiac effects of captopril in young, spontaneously hypertensive rats. Am. J. Hypertens. 12: 581–589 (1999)

    Article  CAS  Google Scholar 

  20. Jang A, Cho YJ, Lee JI, Shin JH, Kim IS, Lee M. The effect of beef peptide on blood pressure and serum lipid concentration of spontaneously hypertensive rat. J. Anim. Sci. Technol. 46: 107–114 (2004)

    Article  CAS  Google Scholar 

  21. Das ML, Soffer RS. Pulmonary angiotensin-converting enzyme. J. Biol. Chem. 250: 6762–6768 (1975)

    CAS  Google Scholar 

  22. Cushman DW, Cheng HS. Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648 (1971)

    Article  CAS  Google Scholar 

  23. Leila MM, Daniele G, Carlos A. Aortic wall remodeling in rats with nitric oxide deficiency treated by enalapril or verapamil. Pathol. Res. Pract. 200: 211–217 (2004)

    Article  Google Scholar 

  24. Penny M, Kris-Etherton, Jessica AG, Kirsten FH, Sheila GW. Milk products, dietary patterns, and blood pressure management. J. Am. Coll. Nutr. 28: 103s–119s (2009)

    Google Scholar 

  25. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J. Clin. Invest. 97: 1916–1923 (1996)

    Article  CAS  Google Scholar 

  26. Romero JC, Reckelhoff JF. Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34: 943–949 (1999)

    CAS  Google Scholar 

  27. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: Biochemistry, pathophysiology, and development of therapeutics. Nat. Rev. Drug Discov. 6: 662–680 (2007)

    Article  CAS  Google Scholar 

  28. Matsumoto K, Hayashi K. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J. Biomech. Eng. 118: 62–73 (1996)

    Article  CAS  Google Scholar 

  29. Heeneman S, Sluimer JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ. Res. 101: 441–454 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryowon Choue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.M., Park, S. & Choue, R. Effects of fermented milk peptides supplement on blood pressure and vascular function in spontaneously hypertensive rats. Food Sci Biotechnol 19, 1409–1413 (2010). https://doi.org/10.1007/s10068-010-0201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0201-0

Keywords

Navigation