Skip to main content

Hepatoprotective effect of chicory (Chicorium intybus) root extract against orotic acid-induced fatty liver in rats

Abstract

Effect of chicory root extract (CRE) on the triglyceride metabolism in orotic acid (OA)-fed rats was investigated. Liver weights and hepatic triglyceride concentrations were markedly increased by OA-feeding rats. These results were attributed to the significant increase in the activity of hepatic phosphatidate phosphohydrolase (PAP), diacylglycerol acyltransferase (DGAT), and ratelimiting enzymes for triglyceride synthesis. Supplementation of CRE to OA did significantly reduced the hepatic triglyceride concentrations and DGAT activity without affecting PAP activity. Furthermore, OA treatment was significantly decreased plasma triglyceride (TG) and increased hepatic TG concentrations and reduced microsomal triglyceride transfer protein (MTP) activity without diminishing MTP mRNA expression in rats. However, hepatic TG concentration was significantly decreased and MTP activity was also reduced without diminishing MTP mRNA expression in rats fed simultaneous with OA and CRE diet. The hepatocytes in the OA-feeding rats contained numerous largely fat droplets, but CRE feeding prevented the OA-induced fat accumulation. Present study demonstrates that CRE reduces the liver TG accumulation by reduced DGAT and MTP activities without diminishing MTP mRNA expression by OA administration.

This is a preview of subscription content, access via your institution.

References

  1. Cha JY, Mameda Y, Oogami K, Yamamoto K, Yanagita T. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats. Biosci. Biotech. Bioch. 62: 508–513 (1998)

    CAS  Article  Google Scholar 

  2. Su GM, Sefton RM, Murray M. Down-regulation of rat hepatic microsomal cytochromes P-450 in microvesicular steatosis induced by orotic acid. J. Pham. Exp. Ther. 291: 953–959 (1999)

    CAS  Google Scholar 

  3. Tokmakjian SD, Haines DSM. Early effects of dietary orotic acid upon liver lipid synthesis and bile cholesterol secretion in rats. J. Lipid Res. 26: 478–486 (1985)

    CAS  Google Scholar 

  4. Hebbachi AM, Seelaender MCL, Baker PW, Gibbons GF. Decreased secretion of very-low-density lipoprotein triglyceride and apolipoprotein B is associated with decreased intercellular triglyceride lipolysis in hepatocytes derived from rats fed orotic acid or n-3 fatty acids. Biochem. J. 325: 711–719 (1997)

    CAS  Google Scholar 

  5. Catwright IJ, Hebachi AM, Higgins JA. Transit and sorting of apolipoprotein B within the endoplasmic reticulum and Golgi compartments of isolated hepatocyte from normal and orotic acidfed rats. J. Biol. Chem. 268: 20937–20949 (1993)

    Google Scholar 

  6. Miyazawa S, Furuta S, Hashimoto T. Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid. Biochim. Biophys. Acta 711: 494–502 (1982)

    CAS  Google Scholar 

  7. Walton PA, Possmayer F. The role of Mg2+-dependent phosphatidate phosphohydrolase in pulmonary glycerolipid biosynthesis. Biochim. Biophys. Acta 796: 346–372 (1984)

    Google Scholar 

  8. Day CP, James OF, Brown W, A St JM, Bennett MK, Fleming IN, Yamaman SJ. The activity of the metabolic form of hepatic phosphatidate phosphohydrolase correlates with the severity of alcoholic fatty liver in human beings. Hepatology 18: 832–840 (1993)

    CAS  Article  Google Scholar 

  9. Fremont L, Gozzelino MT. Dietary sunflower oil reduces plasma and liver triacylglycerols in fasting rats and is associated with decreased liver microsomal phosphatidate phosphohydrolase activity. Lipids 31: 871–878 (1996)

    CAS  Article  Google Scholar 

  10. Cha JY, Cho YS, Kim I, Anno T, Rahman SM, Yanagita T. Effect of hesperetin, a citrus flavonoid, on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats. Plant Food Human Nutr. 56: 349–358 (2001)

    CAS  Article  Google Scholar 

  11. Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4 induced steatosis. J. Biol. Chem. 282: 17078–17089 (2007)

    CAS  Article  Google Scholar 

  12. Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmizt J, Gay G, Rader DJ, Gergg RE. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinamia. Science 258: 999–1001 (1992)

    CAS  Article  Google Scholar 

  13. Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, Wettwrau J. Secretion of apolipoprotein B containing lipoproteins from HeLa cells is dependent on expression of microsomal triglyceride transfer protein and is regulated by lipid availability. P. Natl. Acad. USA 91: 7628–7632 (1994)

    CAS  Article  Google Scholar 

  14. Sugimoto T, Yamashita S, Ishigami M, Sakai N, Hirano K, Tahara M, Matsumoto K, Nakamura T, Matsuzawa Y. Deceased microsomal triglyceride transfer protein activity contributes to initiation of alcohol liver steatosis in rats. J. Hepatol. 36: 157–162 (2002)

    CAS  Article  Google Scholar 

  15. Kok NN, Taper HS, Delzenne NM. Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. J. Appl. Toxicol. 18: 47–53 (1998)

    CAS  Article  Google Scholar 

  16. Vigne JL, Lairon D, Borel P, Portugal H, Pauli AM, Hauton JC, Lafont H. Effect of pectin, wheat bran, and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Brit. J. Nutr. 58: 405–413 (1987)

    CAS  Article  Google Scholar 

  17. Loo VJ, Coussement P, De Leenheer L, Hoebregs M, Smith G. On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit. Rev. Food Sci. 35: 525–552 (1995)

    Article  Google Scholar 

  18. Livesey G, Smith T, Eggum BO, Tetens IH, Nyman M, Roberfroid M, Delzenne N, Schweizer TF, Decombaz J. Determination of digestible energy values and fermentabilities of dietary fibre supplements: A European interlaboratory study in vivo. Brit. J. Nutr. 74: 289–302 (1995)

    CAS  Article  Google Scholar 

  19. Bais HP, Ravishankar GA. Cichorium intybus L. cultivation, processing, utility, value addition, and biotechnology, with an emphasis on current status and future prospects. J. Sci. Food. Agr. 81: 467–484 (2001)

    CAS  Article  Google Scholar 

  20. Gadgoli C, Mishra SH, Antihepatotoxic activity of Cichorium intybus. J. Ethnopharmacol. 58: 131–134 (1997)

    CAS  Article  Google Scholar 

  21. Park CK, Cha JY, Jeon BS, Kim NM, Shim KH. Effects of chicory root water extracts on serum triglyceride and microsomal triglyceride transfer protein (MTP) activity in rats. J. Korean Soc. Food Sci. Nutr. 29: 518–527 (2000)

    Google Scholar 

  22. Bunang Y, Wang YM, Cha JY, Nagao K, Yanagita T. Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition 21: 867–873 (2005)

    Article  Google Scholar 

  23. Cha JY, Jun BS, Cho YS. Prevention of orotic acid-induced fatty liver in rats by capsaicin. Food Sci. Biotechnol. 13: 597–602 (2004)

    CAS  Google Scholar 

  24. Miyasaka H, Sanada H, Ayano Y. Relationship between colonic products from corn bran hemicellulose and the lipid metabolism in rats fed on diets supplemented with orotic acid. Biosci. Biotech. Bioch. 56: 157–158 (1992)

    CAS  Article  Google Scholar 

  25. Kok N, Roberfroid M, Delzenne N. Dietary oligofructose modifies the impact of fructose on hepatic triglyceride metabolism. Metabolism 45: 1547–1550 (1996)

    CAS  Article  Google Scholar 

  26. Kim MH, Shin HK. The water soluble extract of chicory influences serum and liver lipid concentrations and fecal lipid extraction in rats. J. Nutr. 128: 1731–1736 (1998)

    CAS  Google Scholar 

  27. Folch JM, Lees GH, Sloane-Starley. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509 (1957)

    CAS  Google Scholar 

  28. Coleman RA, Bell RM. Triacylglycerol synthesis in isolated fat cells. J. Biol. Chem. 251: 4537–4543 (1976)

    CAS  Google Scholar 

  29. Oliveira CP, Alves VA, Lima VM, Stefano JT, Debbas V, Sá SV, Wakamatsu A, Corrêa-Giannella ML, de Mello ES, Havaki S, Tiniakos DG, Marinos E, de Oliveira MG, Giannella-Neto D, Laurindo FR, Caldwell S, Carrilho FJ. Modulation of hepatic microsomal triglyceride transfer protein (MTP) induced by S-nitroso-N-acetylcysteine in ob/ob mice. Biochem. Pharmacol. 74: 290–297 (2007)

    CAS  Article  Google Scholar 

  30. Cha JY, Jun BS, Yoo KS, Hahm JR, Cho YS. Fermented chaga mushroom (Inonotus obliquus) effects on hypolipidemia and hepatoprotection in Otsuka Long-Evans Tokushima fatty rats. Food Sci. Biotechnol. 15: 122–127 (2006)

    CAS  Google Scholar 

  31. Duncan DB. Multiple range and multiple F test. Biometrics 1: 1–42 (1959)

    Article  Google Scholar 

  32. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N. Dietary oligofructose lowers triglycerides, phospholipids, and cholesterol in serum and very low density lipoproteins of rats. Lipids 30: 163–167 (1995)

    CAS  Article  Google Scholar 

  33. Aoyama Y, Morifuji M. Dietary orotic acid increased 1,2-diacylglycerol levels and lowers superoxide dismutase activity in rat liver. J. Nutr. Sci. Vitaminol. 48: 40–46 (2002)

    CAS  Google Scholar 

  34. Casaschi A, Maiyoh GK, Adeli K, Theirault AG. Increased diacylglycerol acyltransferase activity is associated with triglyceride accumulation in tissues of diet-induced insulin-resistant hyperlipidemic hamsters. Metabolism 54: 403–409 (2005)

    CAS  Article  Google Scholar 

  35. Bunang Y, Cha JY, Nagao K, Wang YM, Inoue N, Yanagita T. Alleviation of fatty liver by α-linolenic acid. J. Nutr. Sci.Vitaminol. 50: 272–276 (2004)

    Google Scholar 

  36. Atzel A, Wetterau JR. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry 32: 10444–10450 (1993)

    CAS  Article  Google Scholar 

  37. Benoist F, Nicodeme E, Grand-Perret T. Microsomal triglyceride transfer protein prevents presecretory degradation of apolipoprotein B-100. A dithiothreitol-sensitive protease is involved. Eur. J. Biochem. 240: 713–720 (1996)

    CAS  Article  Google Scholar 

  38. Lin MC, Li JJ, Wang EJ, Princler GL, Kauffman FC, Kung HF. Ethanol down-regulates the transcription of microsomal triglyceride transfer protein gene. FASEB J. 11: 1145–1152 (1979)

    Google Scholar 

  39. Murakoshi M, Misawa M, Watanabe K. Ultrastructural and enzyme histochemical studies in orotic acid-induced fatty liver. Tokai J. Exp. Clin. Med. 11: 39–45 (1986)

    CAS  Google Scholar 

  40. Goto H, Yamashita S, Makita T. Prevention of orotic acid-induced fatty liver in male rats by dihydroepiandrosterone and/or phenobarbital. J. Vet. Med. Sci. 60: 513–517 (1998)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Su Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cha, JY., Park, CK. & Cho, YS. Hepatoprotective effect of chicory (Chicorium intybus) root extract against orotic acid-induced fatty liver in rats. Food Sci Biotechnol 19, 865–871 (2010). https://doi.org/10.1007/s10068-010-0123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0123-x

Keywords

  • orotic acid
  • fatty liver
  • microsomal triglyceride transfer protein (MTP)
  • MTP mRNA expression
  • diacylglycerol acyltransferase (DGAT)