Skip to main content
Log in

Ceramide, a crucial functional lipid, and its metabolic regulation by acid ceramidase

  • Research Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Over two decades ago, ceramide, a precursor of most complex sphingolipids, was recognized as a second messenger that plays important roles in signal transduction and cell regulation. Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is a lysosomal hydrolase that catalyzes the breakdown of ceramide into sphingosine (Sph) and free fatty acid, thereby controlling the concentration of ceramide. Sph can be further phosphorylated by Sph kinase to generate sphingosine 1-phosphate (S1P), which is considered as a bioactive lipid that antagonizes ceramide-induced apoptosis. Importantly, AC can also synthesize ceramide from Sph and free fatty acids, suggesting that the enzyme may determine cell fate, namely, death or survival, by controlling the balance between the intracellular levels of ceramide and S1P. Recent studies have also shown that aberrant AC activity is a relevant feature of human disease. This review will discuss the roles of ceramide, the current findings regarding AC, and its important roles in mammalian development and human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855–1859 (1996)

    Article  CAS  Google Scholar 

  2. Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10: 73–80 (2000)

    Article  CAS  Google Scholar 

  3. Spiegel S. Milstien S. Sphingosine-1-phosphate: Signaling inside and out. FEBS Lett. 476: 55–57 (2000)

    Article  CAS  Google Scholar 

  4. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266: 14486–14490 (1991)

    CAS  Google Scholar 

  5. Bielawski J, Szulc ZM, Hannun YA, Bielawska A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39: 82–91 (2006)

    Article  CAS  Google Scholar 

  6. Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60: 643–665 (1998)

    Article  CAS  Google Scholar 

  7. Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA. Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J. Biol. Chem. 268: 9255–9261 (1993)

    CAS  Google Scholar 

  8. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268: 15523–15530 (1993)

    CAS  Google Scholar 

  9. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. P. Natl. Acad. Sci. USA 92: 1347–1351 (1995)

    Article  CAS  Google Scholar 

  10. Lee JY, Hannun YA, Obeid LM. Ceramide inactivates cellular protein kinase Calpha. J. Biol. Chem. 271: 13169–13174 (1996)

    Article  CAS  Google Scholar 

  11. Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 273: 16568–16575 (1998)

    Article  CAS  Google Scholar 

  12. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L. Protein kinase C zeta isoform is critical for kappa Bdependent promoter activation by sphingomyelinase. J. Biol. Chem. 269: 19200–19202 (1994)

    CAS  Google Scholar 

  13. Bourbon NA, Sandirasegarane L, Kester M. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: Implications for growth arrest. J. Biol. Chem. 277: 3286–3292 (2002)

    Article  CAS  Google Scholar 

  14. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89: 63–72 (1997)

    Article  CAS  Google Scholar 

  15. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365: 557–560 (1993)

    Article  CAS  Google Scholar 

  16. Snider AJ, Kawamori T, Bradshaw SG, Orr KA, Gilkeson GS, Hannun YA. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J. 23: 143–152 (2009)

    Article  CAS  Google Scholar 

  17. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381: 800–803 (1996)

    Article  CAS  Google Scholar 

  18. Kai M, Wada I, Imai S, Sakane F, Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J. Biol. Chem. 272: 24572–24578 (1997)

    Article  CAS  Google Scholar 

  19. Le Stunff H, Peterson C, Thornton R, Milstien S, Mandala SM, Spiegel S. Characterization of murine sphingosine-1-phosphate phosphohydrolase. J. Biol. Chem. 277: 8920–8927 (2002)

    Article  Google Scholar 

  20. Ogawa C, Kihara A, Gokoh M, Igarashi Y. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J. Biol. Chem. 278: 1268–1272 (2003)

    Article  CAS  Google Scholar 

  21. Zhou J, Saba JD. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem. Bioph. Res. Co. 242: 502–507 (1998)

    Article  CAS  Google Scholar 

  22. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555 (1998)

    Article  CAS  Google Scholar 

  23. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106: 951–961 (2000)

    Article  CAS  Google Scholar 

  24. Wang F, Van Brocklyn JR, Hobson JP, Movafagh S, Zukowska-Grojec Z, Milstien S. Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem. 274: 35343–35350 (1999)

    Article  CAS  Google Scholar 

  25. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131: 994–1008 (2007)

    Article  CAS  Google Scholar 

  26. Herr DR, Grillet N, Schwander M, Rivera R, Muller U, Chun J. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J. Neurosci. 27: 1474–1478 (2007)

    Article  CAS  Google Scholar 

  27. Gatt S. Enzymic hydrolysis and synthesis of ceramides. J. Biol. Chem. 238: 3131–3133 (1963)

    CAS  Google Scholar 

  28. Sugita M, Dulaney JT, Moser HW. Ceramidase deficiency in Farber’s disease (lipogranulomatosis). Science 178: 1100–1102 (1972)

    Article  CAS  Google Scholar 

  29. Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, Schuchman EH. Purification, characterization, and biosynthesis of human acid ceramidase. J. Biol. Chem. 270: 11098–11102 (1995)

    Article  CAS  Google Scholar 

  30. Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B. Human acid ceramidase: Processing, glycosylation, and lysosomal targeting. J. Biol. Chem. 276: 35352–35360 (2001)

    Article  CAS  Google Scholar 

  31. Koch J, Gartner S, Li CM, Quintern LE, Bernardo K, Levran O. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease. J. Biol. Chem. 271: 33110–33115 (1996)

    Article  CAS  Google Scholar 

  32. Shtraizent N, Eliyahu E, Park JH, He X, Shalgi R, Schuchman EH. Autoproteolytic cleavage and activation of human acid ceramidase. J. Biol. Chem. 283: 11253–11259 (2008)

    Article  CAS  Google Scholar 

  33. He X, Okino N, Dhami R, Dagan A, Gatt S, Schulze H. Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase. J. Biol. Chem. 278: 32978–32986 (2003)

    Article  CAS  Google Scholar 

  34. Okino N, He X, Gatt S, Sandhoff K, Ito M, Schuchman EH. The reverse activity of human acid ceramidase. J. Biol. Chem. 278: 29948–29953 (2003)

    Article  CAS  Google Scholar 

  35. Farber S, Cohen J, Uzman LL. Lipogranulomatosis: A new lipoglyco-protein ’storage’ disease. J. Mt. Sinai Hosp. NY 24: 816–837 (1957)

    CAS  Google Scholar 

  36. Li CM, Park JH, Simonaro CM, He X, Gordon RE, Friedman AH. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79: 218–224 (2002)

    Article  CAS  Google Scholar 

  37. Eliyahu E, Park JH, Shtraizent N, He X, Schuchman EH. Acid ceramidase is a novel factor required for early embryo survival. FASEB J. 21: 1403–1409 (2007)

    Article  CAS  Google Scholar 

  38. Marston JH, Chang MC. The fertilizable life of ova and their morphology following delayed insemination in mature and immature mice. J. Exp. Zool. 155: 237–251 (1964)

    Article  CAS  Google Scholar 

  39. Tarin JJ, Perez-Albala S, Aguilar A, Minarro J, Hermenegildo C, Cano A. Long-term effects of postovulatory aging of mouse oocytes on offspring: A two-generational study. Biol. Reprod. 61: 1347–1355 (1999)

    Article  CAS  Google Scholar 

  40. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6: 1109–1114 (2000)

    Article  CAS  Google Scholar 

  41. Selzner M, Bielawska A, Morse MA, Rudiger HA, Sindram D, Hannun YA. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 61: 1233–1240 (2001)

    CAS  Google Scholar 

  42. Riboni L, Campanella R, Bassi R, Villani R, Gaini SM, Martinelli-Boneschi F. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia 39: 105–113 (2002)

    Article  Google Scholar 

  43. Rylova SN, Somova OG, Dyatlovitskaya EV. Comparative investigation of sphingoid bases and fatty acids in ceramides and sphingomyelins from human ovarian malignant tumors and normal ovary. Biochemistry-Moscow+ 63: 1057–1060 (1998)

    CAS  Google Scholar 

  44. Elojeimy S, Liu X, McKillop JC, El-Zawahry AM, Holman DH, Cheng JY. Role of acid ceramidase in resistance to FasL: Therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Mol. Ther. 15: 1259–1263 (2007)

    Article  CAS  Google Scholar 

  45. Morales A, Paris R, Villanueva A, Llacuna L, Garcia-Ruiz C, Fernandez-Checa JC. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene 26: 905–916 (2007)

    Article  CAS  Google Scholar 

  46. Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J. Exp. Med. 192: 601–612 (2000)

    Article  CAS  Google Scholar 

  47. Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA. Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. 167: 3773–3784 (2001)

    CAS  Google Scholar 

  48. Hara S, Nakashima S, Kiyono T, Sawada M, Yoshimura S, Iwama T. Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53. Oncol. Rep. 12: 119–123 (2004)

    CAS  Google Scholar 

  49. Payne SG, Brindley DN, Guilbert LJ. Epidermal growth factor inhibits ceramide-induced apoptosis and lowers ceramide levels in primary placental trophoblasts. J. Cell. Physiol. 180: 263–270 (1999)

    Article  CAS  Google Scholar 

  50. Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg C, Rhee JG. The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate 58: 382–393 (2004)

    Article  CAS  Google Scholar 

  51. Raisova M, Goltz G, Bektas M, Bielawska A, Riebeling C, Hossini AM. Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett. 516: 47–52 (2002)

    Article  CAS  Google Scholar 

  52. Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem. 277: 9812–9818 (2002)

    Article  CAS  Google Scholar 

  53. Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W. Human acid ceramidase is overexpressed but not mutated in prostate cancer. Gene Chromosome Canc. 29: 137–146 (2000)

    Article  CAS  Google Scholar 

  54. Musumarra G, Barresi V, Condorelli DF, Scire S. A bioinformatic approach to the identification of candidate genes for the development of new cancer diagnostics. Biol. Chem. 384: 321–327 (2003)

    Article  CAS  Google Scholar 

  55. Monick MM, Mallampalli RK, Bradford M, McCoy D, Gross TJ, Flaherty DM. Cooperative prosurvival activity by ERK and Akt in human alveolar macrophages is dependent on high levels of acid ceramidase activity. J. Immunol. 173: 123–135 (2004)

    CAS  Google Scholar 

  56. Maeda I, Takano T, Matsuzuka F, Maruyama T, Higashiyama T, Liu, G. Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: Decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors. Int. J. Cancer 81: 700–704 (1999)

    Article  CAS  Google Scholar 

  57. Zhang Z, Mandal AK, Mital A, Popescu N, Zimonjic D, Moser A. Human acid ceramidase gene: Novel mutations in Farber disease. Mol. Genet. Metab. 70: 301–309 (2000)

    Article  CAS  Google Scholar 

  58. Huang Y, Tanimukai H, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur. J. Neurosci. 20: 3489–3497 (2004)

    Article  Google Scholar 

  59. He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 31: 398–408 (2010)

    Article  CAS  Google Scholar 

  60. Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS. Scereted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. P. Natl. Acad. Sci. USA 91: 7104–7108 (1994)

    Article  CAS  Google Scholar 

  61. Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279: 36608–36615 (2004)

    Article  CAS  Google Scholar 

  62. Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 280: 20148–20153 (2005)

    Article  CAS  Google Scholar 

  63. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: A potential mechanism for cardiovascular and metabolic risk. Diabetes 55: 2579–2587 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Hoo Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Yoon, S.H. Ceramide, a crucial functional lipid, and its metabolic regulation by acid ceramidase. Food Sci Biotechnol 19, 859–864 (2010). https://doi.org/10.1007/s10068-010-0122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0122-y

Keywords

Navigation