Development of banana peel jelly and its antioxidant and textural properties


The principal objectives of this study were to develop a functional jelly product that possesses antioxidant activity and contains dietary fiber, utilizing banana peel, a common banana byproduct, and to evaluate its physicochemical and antioxidant properties to verify the maintenance of its antioxidant property even after cooking for jelly-production. The jelly was produced under the identical conditions of cooking time, temperature, and sugar contents with ordinary jellies, except the addition of banana peel powder (BPP). The hardness, chewiness, and springiness of the produced jellies increased with addition of supplementary banana peel powder. Antioxidant activities of BPP and the produced banana peel jellies were compared through 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 2,2′-azino-bis(3-ethylbenzo thiazoline, 6-sulphonic acid) (ABTS) radical scavenging test, and nitrite scavenging activity assay. The antioxidant activities also remained in the jelly after cooking during jelly production. The textural properties, the contents of total dietary fiber, phenolics, and flavonoids, and the antioxidant activities of the jellies were correlated positively with the amount of BPP added for the jellies.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ames BN. Dietary carcinogens and anticarcinogens, oxygen radicals, and degenerative diseases. Science 221: 1256–1264 (1983)

    Article  CAS  Google Scholar 

  2. 2.

    Ciou JY, Wang CCR, Chen J, Chiang PY. Total phenolics content and antioxidant activity of extracts from dried water caltrop hulls. J. Food Drug Anal. 16: 41–47 (2008)

    CAS  Google Scholar 

  3. 3.

    Benavente-garcia O, Castillo J, Marin FR, Ortuno A, Del-rio JA. Uses and properties of Citrus flavonoids. J. Agr. Food Chem. 45: 4505–4515 (2007)

    Article  Google Scholar 

  4. 4.

    Burns J, Gardner PT, O’Neil J, Crawford S, Morecroft I, McPhail DB, Lister C, Matthews D, MacLean MR, Lean ME, Duthie GG, Crozier A. Relationship among antioxidant activity, vasodilatation capacity, and phenolic content of red wines. J. Agr. Food Chem. 48: 220–230 (2000)

    Article  CAS  Google Scholar 

  5. 5.

    Tchobanoglous T, Theisen H, Vigil S. Integrated Solid Waste Management-Engineering Principles and Management Issues. McGraw-Hill Book Co., Inc., New York, NY, USA. pp. 3–22 (1993)

    Google Scholar 

  6. 6.

    Zhang P, Whistler RL, BeMiller JN, Hamaker BR. Banana starch: Production, physicochemical properties, and digestibility. Carbohyd. Polym. 59: 443–458 (2005)

    Article  CAS  Google Scholar 

  7. 7.

    Someya S, Yoshiki Y, Okubo K. Antioxidant compounds from bananas (Musa Cavendish). Food Chem. 79: 351–354 (2002)

    Article  CAS  Google Scholar 

  8. 8.

    Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103: 590–600 (2007)

    Article  Google Scholar 

  9. 9.

    AOAC. Official Method of Analysis of AOAC Intl. 17th ed. Association of Official Analytical Communities, Arlington, VA, USA (2000)

    Google Scholar 

  10. 10.

    Yu L, Reitmeier CA, Love MH. Strawberry texture and pectin content as affected by electron beam irradiation. J. Food Sci. 61: 844–846 (1996)

    Article  CAS  Google Scholar 

  11. 11.

    Keinanen M. Comparison of methods for the extraction of flavonoids from birch leaves (Betula pendula Roth.) carried out using high-performance liquid chromatography. J. Agr. Food Chem. 41: 1988–1990 (1993)

    Article  Google Scholar 

  12. 12.

    Sofidiya MO, Odukoya OA, Afolayan AJ, Familoni OB. Phenolic contents, antioxidant, and antibacterial activities of Hymenocardia acida. Nat. Prod. Res. 23: 168–177 (2009)

    Article  CAS  Google Scholar 

  13. 13.

    Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int. 38: 357–367 (2005)

    Article  CAS  Google Scholar 

  14. 14.

    Jung DC, Lee SY, Yoon JH, Hong KP, Kang YS, Park SR, Park SK, Ha SD, Kim GH, Bae DH. Inhibition of pork and fish oxidation by a novel plastic film coated with horseradish extract. LWT-Food Sci. Technol. 42: 856–861 (2009)

    Article  CAS  Google Scholar 

  15. 15.

    Thaipong K, Boonprakob U, Crosby K, Zevallos-Cisneros L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669–675 (2006)

    Article  CAS  Google Scholar 

  16. 16.

    Choi DB, Cho KA, Na MS, Choi HS, Kim YO, Lim DH, Cho SJ, Cho H. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J. Ind. Eng. Chem. 14: 765–770 (2008)

    CAS  Google Scholar 

  17. 17.

    Marconi E, Ruggeri S, Carnovale E. Chemical evaluation of wild under-exploited Vigna spp. Seeds. Food Chem. 59: 203–212 (1997)

    Article  CAS  Google Scholar 

  18. 18.

    Spiller GA. Handbook of Dietary Fiber in Human Nutrition. 3rd ed. CRC Press, Inc., Boca Raton, FL, USA. p. 339 (1986)

    Google Scholar 

  19. 19.

    Grigelmo-Miguel N, Gorinstein S, Martn-Belloso O. Characterization of peach dietary fiber concentrate as a food ingredient. Food Chem. 65: 175–181 (1999)

    Article  CAS  Google Scholar 

  20. 20.

    Schneeman BO. Soluble vs. insoluble fiber different physiological responses. Food Technol.-Chicago 47: 81–82 (1987)

    Google Scholar 

  21. 21.

    Madhav A, Pushpalatha PB. Quality degradation of jellies prepared using pectin extracted from fruit wastes. J. Trop. Agric. Food Sci. 40: 31–34 (2002)

    Google Scholar 

  22. 22.

    Wang YC, Chuang YC, Hsu HW. The flavonoid, carotenoid, and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 106: 277–284 (2008)

    Article  CAS  Google Scholar 

  23. 23.

    Royer G, Madieta E, Symoneaux R, Jourjon F. Preliminary study of the production of apple pomace and quince jelly. Food Sci. Technol. Res. 39: 1022–1025 (2006)

    CAS  Google Scholar 

  24. 24.

    Fu JT, Rao MA. Rheology and structure development during gelation of low-methoxyl pectin gels: The effect of sucrose. Food Hydrocolloid 15: 93–100 (2001)

    Article  CAS  Google Scholar 

  25. 25.

    Pokorny J, Yanishlieva N, Gordon M. Antioxidants in Food-Practical Applications. CRC Press, Inc., Boca Raton, FL, USA. pp. 1–3 (2001)

    Google Scholar 

  26. 26.

    Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agr. 85: 1715–1724 (2005)

    Article  CAS  Google Scholar 

  27. 27.

    Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381–387 (2006)

    Article  CAS  Google Scholar 

  28. 28.

    Khatun M, Eguchi S, Yamaguchi T, Takamura H, Matoba T. Effect of thermal treatment on radical-scavenging activity of some spices. Food Sci. Technol. Res. 12: 178–185 (2006)

    Article  CAS  Google Scholar 

  29. 29.

    Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933–956 (1996)

    Article  CAS  Google Scholar 

  30. 30.

    Tung YT, Wu JH, Kuo YH, Chang ST. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresource Technol. 98: 1120–1123 (2007)

    Article  CAS  Google Scholar 

  31. 31.

    Parejo I, Viladomat F, Bastida J, Schmeda-Hirschmann G, Burillo J, Codina C. Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J. Agr. Food Chem. 52: 1890–1897 (2004)

    Article  CAS  Google Scholar 

  32. 32.

    Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97: 654–660 (2006)

    Article  CAS  Google Scholar 

  33. 33.

    Van-den-Berg R, Haenen GRMM, Van-den-Berg H, Bast A. Applicability of an improved TEAC assay for evaluation of antioxidant capacity measurement of mixtures. Food Chem. 66: 511–517 (1999)

    Article  CAS  Google Scholar 

  34. 34.

    Cheung LM, Cheung-Peter CK, Vincent ECO. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81: 249–255 (2003)

    Article  CAS  Google Scholar 

  35. 35.

    Shobana S, Naidu KA. Antioxidant activity of selected Indian spices. Prostag. Leukotr. Ess. 62: 107–110 (2000)

    Article  CAS  Google Scholar 

  36. 36.

    Maeda H, Katsuki T, Akaike T, Yasutake R. High correlation between lipid peroxide radical and tumor promoter effect: Suppression of tumor promotion in the Epstein Barr virus/Blymphocyte system and scavenging of alkyl peroxide radicals by various vegetable extracts. Jpn. J. Cancer Res. 83: 923–928 (1992)

    CAS  Google Scholar 

  37. 37.

    Pratt DE, Watts BM. The antioxidant activity of vegetable extracts. I. Flavone aglycones. J. Food. Sci. 27: 29–33 (1964)

    Google Scholar 

  38. 38.

    Jiao Z, Liu J, Wang S. Antioxidant activities of total pigment extract from blackberries. Food Technol. Biotech. 43: 97–102 (2005)

    Google Scholar 

  39. 39.

    Kang YH, Park YK, Lee GD. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol. 28: 232–239 (1996)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dong-Ho Bae.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, EH., Yeom, HJ., Ha, MS. et al. Development of banana peel jelly and its antioxidant and textural properties. Food Sci Biotechnol 19, 449–455 (2010).

Download citation


  • banana peel
  • jelly
  • phenolic
  • antioxidant activity
  • textural property