Food Science and Biotechnology

, Volume 19, Issue 2, pp 383–390 | Cite as

Free radical scavenging, angiotensin I-converting enzyme (ACE) inhibitory, and in vitro anticancer activities of ramie (Boehmeria nivea) leaves extracts

  • Jin Woo Nho
  • In Guk Hwang
  • Hyun Young Kim
  • Youn Ri Lee
  • Koan Sik Woo
  • Bang Yeon Hwang
  • Seong Jun Chang
  • Junsoo Lee
  • Heon Sang Jeong
Research Article

Abstract

The objectives of this study were to evaluate the antioxidant activity, angiotensin I-converting enzyme (ACE) inhibitory activity, and anticancer activity of ramie (Boehmeria nivea) leaves (RL). The RL was extracted with 70%(v/v) ethanol (RLE) and fractionated with the solvents of hexane, chloroform, ethylacetate, and aqueous. The ethylacetate fraction (EF) contained the highest phenolic contents of 651.65 mg/g, followed by RLE of 148.72 mg/g. The EF showed strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging with a 50% inhibition concentration (IC50) of 0.097, 0.129, and 0.191 mg/mL, respectively. The ACE-inhibitory activity of EF was 80.32% at a concentration of 0.1 mg/mL. The EF showed growth-inhibitory effect of 67.21% at 0.25 mg/mL on the LoVo cell line, and 56.08% at 0.25 mg/mL on the NCI-H460 cell line, respectively. Therefore, it was suggested that the RL were potential materials for use as functional food and medicine.

Keywords

ramie (Boehmeria nivea) leaves phenolic content radical scavenging activity angiotensin I-converting enzyme (ACE) inhibitory activity anticancer activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cerutti PA. Oxidant stress and carcinogenesis. Eur. J. Clin. Invest. 21: 1–11 (1991)CrossRefGoogle Scholar
  2. 2.
    Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Bio. Med. 25: 392–403 (1998)CrossRefGoogle Scholar
  3. 3.
    Anderson D. Antioxidant defences against reactive oxygen species causing genetic and other damage. Mutat. Res. 350: 103–108 (1999)Google Scholar
  4. 4.
    Hang X, Kirk LP. Isolation and identification of potential cancer chemopreventive agents from methanolic extracts of green onion (Allium cepa). Phytochemistry 68: 1059–1067 (2007)CrossRefGoogle Scholar
  5. 5.
    Evren A, Deniz B, Oguz B, Semra Û. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep. Purif. Technol. 62: 342–348 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu X, Cui C, Zhao M, Wang J, Luo W. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem. 109: 909–915 (2008)CrossRefGoogle Scholar
  7. 7.
    Jung MJ, Heo SI, Wang MH. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem. 108: 482–487 (2008)CrossRefGoogle Scholar
  8. 8.
    Anagnostopopulou MA, Kefalas P, Papageorgiou VP, Assimepoulou AN, Boskou D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 94: 19–25 (2006)CrossRefGoogle Scholar
  9. 9.
    Ito N, Fukushima S, Hasegawa A, Shibata M, Ogiso T. Carcinogenicity of buthylated hydroxyanisole in F344 rats. J. Natl. Cancer Ins. 70: 343–347 (1983)Google Scholar
  10. 10.
    Zhao TL, Yani Y, Lili Z, Ping S, Zhong WL, Jian L, Heping X, Yuande P, Shouwei T. Study on the performance of ramie fiber modified with ethylenediamine. Carbohyd. Polym. 71: 18–25 (2008)CrossRefGoogle Scholar
  11. 11.
    Da SF, Melo JCP, Airoldi C. Preparation of ethylenediamine anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at solid/liquid interface. Carbohyd. Res. 341: 2842–2450 (2006)CrossRefGoogle Scholar
  12. 12.
    Hong JM, Ryu HS. Mechanical prperties and fabric handle of Hansan ramie (Part1). J. Korean Soc. Cloth. Tex. 21: 1315–1322 (1997)Google Scholar
  13. 13.
    Kim JK, Lee HD, Kim NH, Choi JU, Park CB, Bang JK. Seasonal variations of chemical components in citron leaves. Korean Soc. Int. Agric. 12: 192–196 (2000)Google Scholar
  14. 14.
    Sim YJ, Han YS, Chun HJ. Studies on the nutritional components of mugwort (Artemisia mongolica Fischer). Korean J. Food Sci. Technol. 24: 49–53 (1992)Google Scholar
  15. 15.
    Jung KM, Kang GH, Kwon MK, Song IK, Cho DH, Chou YD. Chemical components and antioxidant of persimmon (Diospyros Kaki Thunb) leaves. Korean J. Food Preserv. 2: 175–181 (2004)Google Scholar
  16. 16.
    Kang MY, Jeong YH, Eun JB. Identification and determination of dietary fibers in citron, jujube, and persimmon. Korean J. Food Preserv. 10: 60–64 (2003)Google Scholar
  17. 17.
    Mokbel MS, Hashinaga F. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 94: 529–534 (2006)CrossRefGoogle Scholar
  18. 18.
    Bektas T, Munevver S, Akpulat HA, Atalay S. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 95: 200–204 (2006)CrossRefGoogle Scholar
  19. 19.
    Chung SK, Osawa T. Hydroxy radical scavengers from white mustard (Sinapis alba). Food Sci. Biotechnol. 7: 209–213 (1998)Google Scholar
  20. 20.
    Nagai T, Sakai M, Inoue R, Inoue H, Suzuki N. Antioxidative acitivities of some commercially honeys, royal jelly, and propolis. Food Chem. 75: 237–240 (2001)CrossRefGoogle Scholar
  21. 21.
    Cushman DW, Cheung HS. Spectrophotometeric assay and properties of angiotensin converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648 (1971)CrossRefGoogle Scholar
  22. 22.
    Shahidi F, Wansundara PK. Phenolic antioxidant. Crit. Rew. Food Sci. 32: 67–103 (1992)CrossRefGoogle Scholar
  23. 23.
    Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung Island. Korean J. Food Sci. Technol. 37: 233–240 (2005)Google Scholar
  24. 24.
    Dina A, Nassima C, Meriem Be, Karima A, Hakima L, Hania B, Nadjet D, Djebbar A. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 112: 303–309 (2009)CrossRefGoogle Scholar
  25. 25.
    Nihal T, Ferda S, Velioglu YS. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93: 713–718 (2005)CrossRefGoogle Scholar
  26. 26.
    Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assayguided comparison. Plant Sci. 163: 1161–1168 (2002)CrossRefGoogle Scholar
  27. 27.
    Hwang IG, Woo KS, Kim DJ, Hong JT, Hwang BY, Lee RY, Jeong HS. Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Sci. Biotechnol. 16: 963–966 (2007)Google Scholar
  28. 28.
    Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, Choi YK, Kim SK. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94: 26–32 (2006)CrossRefGoogle Scholar
  29. 29.
    Andrew CD, Anna KJ, Johannes S. Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J. Ethnopharmacol. 68: 63–70 (1999)CrossRefGoogle Scholar
  30. 30.
    Shen CC, Chang YS, Ho LK. Nuclear magnetic studies of 5, 7-dihydroxyflavonoids. Phytochemistry 34: 843–845 (1993)CrossRefGoogle Scholar
  31. 31.
    Lim HW, Shim JG, Choi HK, Lee MW. Phenolic compounds from barks of Actinidia arguta Planchon growing in Korea and its antioxidative and nitric oxide production inhibitory activities. Korean Soc. Pharm. 36: 245–251 (2005)Google Scholar
  32. 32.
    Kim JH, Kim SI, Song KS. Prolyl endopeptidase inhibitors from green tea. Arch. Pharm. Res. 24: 292–296 (2001)CrossRefGoogle Scholar
  33. 33.
    Jeon SY, Bae KH, Seong YH, Song KS. Green tea catechins as a BACE1 (β-secretase) inhibitor. Bioorg. Med. Chem. Lett. 13: 3905–3908 (2003)CrossRefGoogle Scholar
  34. 34.
    Cabrera C, Gimenez R, Lopez CM. Determination of tea components with antioxidant activity. J. Agr. Food Chem. 51: 4427–4435 (2003)CrossRefGoogle Scholar
  35. 35.
    Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G. Possible mechanisms of the cancer-preventive activities of green tea. Mol. Nutr. Food Res. 50: 170–175 (2006)CrossRefGoogle Scholar
  36. 36.
    Steele VE, Kelloff GJ, Balentine D, Boone CW, Mehta R, Bagheri D. Comparative chemopreventive mechanisms of green tea, black tea, and selected polyphenol extracts measured by in vitro bioassays. Carcinogenesis 21: 63–67 (2000)CrossRefGoogle Scholar
  37. 37.
    Roy J, Lai PK. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem. 11: 1451–1460 (2004)Google Scholar
  38. 38.
    Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 88: 219–224 (2004)CrossRefGoogle Scholar
  39. 39.
    Dorman HJD, Hiltunen R. Fe(III) reductive and free radicalscavenging properties of summer savory (Satureja hortensis L.) extract and subtractions. Food Chem. 88: 193–199 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Netherlands 2010

Authors and Affiliations

  • Jin Woo Nho
    • 1
  • In Guk Hwang
    • 1
  • Hyun Young Kim
    • 1
  • Youn Ri Lee
    • 1
  • Koan Sik Woo
    • 2
  • Bang Yeon Hwang
    • 3
  • Seong Jun Chang
    • 4
  • Junsoo Lee
    • 1
  • Heon Sang Jeong
    • 1
  1. 1.Department of Food Science and TechnologyChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Rural Development AdministrationNational Institute of Crop ScienceMilyang, GyeongnamKorea
  3. 3.College of PharmacyChungbuk National UniversityCheongju, ChungbukKorea
  4. 4.Taekyung Nongsan Co., Ltd.SeoulKorea

Personalised recommendations