Tea caffeine: Metabolism, functions, and reduction strategies

Abstract

Tea is a product made up from topmost part of the plant Camellia sinensis. This part includes bud, first leaf (next to bud), second leaf, and stem (spanning from bud to second leaf). Tea is the second most consumed beverage in the world, well ahead of coffee, beer, wine, and carbonated soft drinks. Clinical studies have demonstrated that one of the harmful effects of tea over consumption, at least in sensitive peoples is due to its caffeine content. In view of this, major points discussed in this article are the following: i) a brief overview on tea and its biochemical composition, ii) health effects of tea drink, iii) caffeine metabolism and its functions, iv) possible strategies for caffeine reduction in tea, and v) feasibility of tea improvement through biotechnological approaches.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Marimuthu S, Muraleedharan N. Tea quality: Present status of research in India. J. Plantation Crops 32: 1–12 (2004)

    Google Scholar 

  2. 2.

    Ashihara H, Crozier A. Caffeine: A well known but little mentioned compound in plant science. Trends Plant Sci. 6: 407–413 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    Barua DN. The tea plant of commerce. pp. 55–68. In: Science and Practice in Tea Culture. Tea Research Association, Calcutta, India (1989)

    Google Scholar 

  4. 4.

    Wight W. Tea classification revised. Curr. Sci. India 31: 298–299 (1962)

    Google Scholar 

  5. 5.

    Wu AH, Mimi C. Tea, hormone-related cancers and endogenous hormone levels. Mol. Nutr. Food Res. 50: 160–169 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    Wang H, Provan GJ, Helliwell K. Tea flavonoids: Their functions, utilization, and analysis. Trends Food Sci. Tech. 11: 152–160 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    Chou TM, Benowitz NL. Caffeine and coffee: Effects on health and cardiovascular disease. Comp. Biochem. Physiol. 109: 173–189 (1994)

    CAS  Google Scholar 

  8. 8.

    Fujiki H. Two stages of cancer prevention with green tea. J. Cancer Res. Clin. 125: 589–597 (1999)

    CAS  Article  Google Scholar 

  9. 9.

    Michelle LF, Gladys SM, Andy HL. Green tea and stroke prevention: Emerging evidence. Complement. Theor. Med. 15: 46–53 (2007)

    Article  Google Scholar 

  10. 10.

    Uefuji H, Shinjiro O, Yamaguchi Y, Koizumi N, Sano H. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol. 132: 372–380 (2003)

    CAS  Article  Google Scholar 

  11. 11.

    Mizuno K, Okuda, A, Kato M, Yoneyama N, Tanaka H, Ashihara H, Fujimura T. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS Lett. 534: 75–81 (2003)

    CAS  Article  Google Scholar 

  12. 12.

    Yadav SK, Ahuja PS. Towards generating caffeine-free tea by metabolic engineering. Plant Food Hum. Nutr. 62: 185–191 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H. Production of decaffeinated coffee plants by genetic engineering. Nature 423: 823 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    Harold N, Graham PD. Green tea compositon, consumption, and polyphenol chemistry. Prev. Med. 21: 334–350 (1992)

    Article  Google Scholar 

  15. 15.

    Chu D-C. Green tea-its cultivation, processing of the tea leaves for drinking materials, and kinds of green tea. pp. 1–11. In: Chemistry and Applications of Green Tea. Juneja LR, Chu D-C, Kim M (eds.). CRC Press, Boca Raton, FL, USA (1997)

    Google Scholar 

  16. 16.

    Fernandez PL, Pablos F, Martin MJ, Gonzalez AG. Study of catechin and xanthine tea profiles as geographical tracers. J. Agr. Food Chem. 50: 1833–1839 (2002)

    CAS  Article  Google Scholar 

  17. 17.

    Nehlig A, Daval J, Debry G. Caffeine and the central nervous system: Mechanisms for action, biochemical, metabolic, and psychostimulant effects. Brain Res. Rev. 17: 139–170 (1992)

    CAS  Article  Google Scholar 

  18. 18.

    Spiller GA. Basic metabolism and physiological effects of the methylxanthines. pp. 225–231. In: Caffeine. Spiller GA (ed). CRC Press, Boca Raton, FL, USA (1998)

    Google Scholar 

  19. 19.

    Juneja LR, Chu D-C, Okubo T, Nagato Y, Yokogoshi H. l-Theanine-a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci. Tech. 10: 199–204 (1999)

    CAS  Article  Google Scholar 

  20. 20.

    Kitada Y, Tamase K, Sasaki M, Yamazoe Y, Maeda Y, Yamamoto M, Yonetani T. Determination of l-ascorbic acid, tocopherol, carotene, and chlorophyll in various teas. Nippon Shokuhin Kogyo Gakk. 36: 927–933 (1989)

    CAS  Google Scholar 

  21. 21.

    Sanderson GW, Co H, Gonzalez JG. Biochemistry of tea fermentation: The role of carotenes in black tea aroma formation. J. Food Sci. 36: 231–236 (1971)

    CAS  Article  Google Scholar 

  22. 22.

    Hazarika M, Mahanta PK. Some studies on carotenoids and their degradation in black tea manufacture. J. Sci. Food Agr. 34: 1390–1396 (1983)

    CAS  Article  Google Scholar 

  23. 23.

    Olson JA. Biological actions of carotenoids. J. Nutr. 119: 94–95 (1989)

    CAS  Google Scholar 

  24. 24.

    Packer L. Protective role of vitamin E in biological systems. Am. J. Clin. Nutr. 53: 1050S–1055S (1991)

    CAS  Google Scholar 

  25. 25.

    Joshi MK, Ganguli S. Health effects of black tea and their modulation by milk. Int. J. Tea Sci. 7: 1–18 (2008)

    Google Scholar 

  26. 26.

    Weisburger JH. Tea and health: A historical perspective. Cancer Lett. 114: 315–317 (1997)

    CAS  Article  Google Scholar 

  27. 27.

    Sharma V, Rao LJ. A thought on the biological activities of black tea. Crit. Rev. Food Sci. 49: 379–404 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    Haggi TM, Anthony DD, Gupta S, Ahmad H, Lee MS, Kumar GK, Mukhtar H. Prevention of collagen induced arthritis in mice by a polyphenolic fraction from green tea. P. Natl. Acad. Sci. USA 96: 4524–4529 (1999)

    Article  Google Scholar 

  29. 29.

    Hegarty VM, May HM, Khaw KT. Tea drinking and bone mineral density in older women. Am. J. Clin. Nutr. 71: 1003–1007 (2000)

    CAS  Google Scholar 

  30. 30.

    Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res. 25: 438–443 (1991)

    CAS  Article  Google Scholar 

  31. 31.

    Shankar S, Ganapathy S, Srivastava RK. Green tea polyphenols: Biology and therapeutic implications in cancer. Front. Biosci. 12: 4881–4899 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Van Dieren S, Uiterwaal CSPM, Van der Schouw YT, Van der ADL, Boer JMA, Spijkerman A, Grobbee DE, Beulens JWJ. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 52: 2561–2569 (2009)

    Article  CAS  Google Scholar 

  33. 33.

    Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Ag. 23: 462–467 (2004)

    CAS  Article  Google Scholar 

  34. 34.

    Nance CL, Shearer WT. Is green tea good for HIV-1 infection? J. Allergy Clin. Immunol. 112: 851–853 (2003)

    CAS  Article  Google Scholar 

  35. 35.

    Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging 23: 719–735 (2002)

    CAS  Article  Google Scholar 

  36. 36.

    Dona M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S. Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J. Immunol. 170: 4335–4341 (2003)

    CAS  Google Scholar 

  37. 37.

    Barranco Quintana JL, Allam MF, Del Castillo AS, Navajas RF. Parkinson’s disease and tea: A quantitative review. J. Am. Coll. Nutr. 28: 1–6 (2009)

    Google Scholar 

  38. 38.

    Mandel S, Youdim MB. Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Bio. Med. 37: 304–317 (2004)

    CAS  Article  Google Scholar 

  39. 39.

    Kimura K, Ozeki M, Juneja LR, Ohira H. l-Theanine reduces psychological and physiological stress responses. Biol. Psychol. 74: 39–45 (2007)

    Article  Google Scholar 

  40. 40.

    Kakuda T, Nozawa A, Unno T, Okamura N, Okai O. Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Biosci. Biotech. Bioch. 64: 287–293 (2000)

    CAS  Article  Google Scholar 

  41. 41.

    Sugiyama T, Sadzuka Y. Theanine and glutamate transporter inhibitors enhance the antitumor efficacy of chemotherapeutic agents. Biochim. Biophys. Acta 1653: 47–59 (2003)

    CAS  Google Scholar 

  42. 42.

    Sugiyama T, Sadzuka Y. Theanine, a specific glutamate derivative in green tea, reduces the adverse reactions of doxorubicin by changing the glutathione level. Cancer Lett. 212: 177–184 (2004)

    CAS  Article  Google Scholar 

  43. 43.

    Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv. Bot. Res. 30: 118–205 (1999)

    Google Scholar 

  44. 44.

    Kim YS, Sano H. Pathogen resistance of transgenic tobacco plants producing caffeine. Phytochemistry 69: 882–888 (2008)

    CAS  Article  Google Scholar 

  45. 45.

    Koshiro Y, Zheng XQ, Wang ML, Nagai C, Ashihara H. Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Sci. 171: 242–250 (2006)

    CAS  Article  Google Scholar 

  46. 46.

    Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 51: 116–134 (2007)

    CAS  Article  Google Scholar 

  47. 47.

    Chou CH, Waller GR. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6: 643–654 (1980)

    CAS  Article  Google Scholar 

  48. 48.

    Rizvi SJH, Mukerji D, Mathur SN. Selective phytotoxicity of 1,3,7-trimethylxanthine between Phaseolus mungo and some weeds. Agr. Biol. Chem. Tokyo 45: 1255–1256 (1981)

    CAS  Google Scholar 

  49. 49.

    Friedman J, Waller GR. Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J. Chem. Ecol. 9: 1099–1106 (1983)

    CAS  Article  Google Scholar 

  50. 50.

    Friedman J, Waller GR. Seeds as allelopathic agents. J. Chem. Ecol. 9: 1107–1115 (1983)

    CAS  Article  Google Scholar 

  51. 51.

    Hewavitharanage P, Karunaratne S, Kumar NS. Effect of caffeine on shot-hole borer beetle (Xyleborus fornicatus) of tea (Camellia sinensis). Phytochemistry 51: 35–41 (1999)

    CAS  Article  Google Scholar 

  52. 52.

    Nathanson JA. Caffeine and related methylxanthine possible naturally occurring pesticides. Science 226: 184–187 (1984)

    CAS  Article  Google Scholar 

  53. 53.

    Hollingsworth RG, Armstrong JW, Campbell E. Caffeine as a repellent for slugs and snails: A high concentrations this stimulant becomes a lethal neurotoxin to garden pests. Nature 417: 915–916 (2002)

    CAS  Article  Google Scholar 

  54. 54.

    Dwivedi CM, Junjappa H, Krishna-Murti CR. In vitro screening of potential anti-cancer chemicals: Effect of purine pyrimidine analogues on seed germination. Toxicology 21: 251–260 (1981)

    CAS  Article  Google Scholar 

  55. 55.

    Stallwood GR, Davidson D. Responses of proliferating cells to methylxathines. Reversal of effect by colchicines. Exp. Cell Res. 108: 79–85 (1977)

    CAS  Google Scholar 

  56. 56.

    González-Fernández A, Hernández P, Lopez-Sáez JF. Effect of caffeine and adenosine on G2 repair: Mitotic delay and chromosome damage. Mutat. Res. 149: 275–281 (1985)

    Google Scholar 

  57. 57.

    Ahnström G. Repair processes in germinating seeds: Caffeine enhancement of damage induced by gamma-radiation and alkylating chemicals. Mutat. Res. 26: 99–103 (1974)

    Google Scholar 

  58. 58.

    Swietlinska Z, Zuk J. Effect of caffeine on chromosome damage induced by chemical mutagens and ionizing radiation in Vicia faba and Secale cereale. Mutat. Res. 26: 89–97 (1974)

    CAS  Google Scholar 

  59. 59.

    Timson J. Caffeine. Mutat. Res. 47: 1–52 (1997)

    Google Scholar 

  60. 60.

    Smyth DA. Effect of methylxanthine treatment on rice seedling growth. J. Plant Growth Regul. 11: 125–128 (1992)

    CAS  Article  Google Scholar 

  61. 61.

    Mohanpuria P, Yadav SK. Retardation in seedling growth and induction of early senescense in plants upon caffeine exposure is related to its negative effect on Rubisco. Photosynthetica 47: 293–297 (2009)

    CAS  Article  Google Scholar 

  62. 62.

    Chen X, Whitford GM. Effects of caffeine on fluoride, calcium, and phosphorus metabolism and calcified tissues in the rat. Arch. Oral Biol. 44: 33–39 (1999)

    CAS  Article  Google Scholar 

  63. 63.

    Massey LK. Is caffeine a risk factor for bone loss in the elderly. Am. J. Clin. Nutr. 74: 569–570 (2001)

    CAS  Google Scholar 

  64. 64.

    Cornelis MC, El-Sohemy A. Coffee, caffeine, and coronary heart disease. Curr. Opin. Clin. Nutr. 10: 745–751 (2007)

    CAS  Article  Google Scholar 

  65. 65.

    Grosso LM, Bracken MB. Caffeine metabolism, genetics, and perinatal outcomes: A review of exposure assessment considerations during pregnancy. Ann. Epidemiol. 15: 460–466 (2005)

    Article  Google Scholar 

  66. 66.

    Kuczkowski KM. Caffeine in pregnancy. Arch. Gynecol. Obstet. 280: 695–698 (2009)

    CAS  Article  Google Scholar 

  67. 67.

    Ashihara H. Purine metabolism and the biosynthesis of caffeine in maté leaves. Phytochemistry 33: 1427–1430 (1993)

    CAS  Article  Google Scholar 

  68. 68.

    Koyama Y, Tomoda Y, Kato M, Ashihara H. Metabolism of purine bases, nucleosides, and alkaloids in theobromine-forming Theobroma cacao leaves. Plant Physiol. Biochem. 41: 977–984 (2003)

    CAS  Article  Google Scholar 

  69. 69.

    Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Vol. 30, pp. 117–205. In: Advances in Botanical Research. Callow JR (ed). Academic Press, San Diego, CA, USA (2000)

    Google Scholar 

  70. 70.

    McCarthy AA, Biget L, Lin C, Petiard V, Tanksley SD, McCarthy JG. Cloning, expression, crystallization, and preliminary x-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta). Acta Crystallogr. F. 63: 304–307 (2007)

    Article  CAS  Google Scholar 

  71. 71.

    Kato A, Crozier A, Ashihara H. Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthesis in tea. Phytochemistry 48: 777–779 (1998)

    CAS  Article  Google Scholar 

  72. 72.

    Ogawa M, Herai Y, Koizumi N, Kusano T, Sano H. 7-Methylxanthine methyltransferase of coffee plants. Gene isolation and enzymatic properties. J. Biol. Chem. 276: 8213–8218 (2001)

    CAS  Article  Google Scholar 

  73. 73.

    Kodama Y, Shinya T, Sano H. Dimerization of N-methyltransferases involved in caffeine biosynthesis. Biochimie 90: 547–551 (2008)

    CAS  Article  Google Scholar 

  74. 74.

    Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara H. Caffeine synthase gene from tea leaves. Nature 406: 956–957 (2000)

    CAS  Article  Google Scholar 

  75. 75.

    Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol. 132: 372–380 (2003)

    CAS  Article  Google Scholar 

  76. 76.

    Koshiishi C, Crozier A, Ashihara H. Profiles of purine and pyrimidine nucleotides in fresh and manufactured tea leaves. J. Agr. Food Chem. 49: 4378–4382 (2001)

    CAS  Article  Google Scholar 

  77. 77.

    Ashihara H, Sano H, Crozier A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function, and genetic engineering. Phytochemistry 69: 841–856 (2008)

    CAS  Article  Google Scholar 

  78. 78.

    Ashihara H, Monteiro AM, Moritz T, Gillies FM, Crozier A. Catabolism of caffeine and related purine alkaloids in leaves of Coffea arabica L. Planta 198: 334–339 (1996)

    CAS  Article  Google Scholar 

  79. 79.

    Blecher R, Lingens F. The metabolism of caffeine by a Pseudomonas putida strain. H-S Z. Physiol. Chem. 358: 807–817 (1997)

    Google Scholar 

  80. 80.

    Asano Y, Komeda T, Yamada H. Microbial production of theobromine from caffeine. Biosci. Biotech. Bioch. 57: 1286–1289 (1993)

    CAS  Article  Google Scholar 

  81. 81.

    Brand D, Pandey A, Roussos S, Soccol CR. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb. Tech. 27: 127–133 (2000)

    CAS  Article  Google Scholar 

  82. 82.

    Kalberer P. Breakdown of caffeine in the leaves of Coffea arabica L. Nature 205: 597–598 (1965)

    CAS  Article  Google Scholar 

  83. 83.

    Vrbaški MM, Gruji-Injac B, Gaji, D. A new method for allantoin determination and its application in allantoin determination in Agrostemma githago L. seed. Anal. Biochem. 91: 304–308 (1978)

    Article  Google Scholar 

  84. 84.

    Mohanpuria P, Kumar V, Joshi R, Gulati A, Ahuja PS, Yadav SK. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation. Mol. Biotechnol. 43: 104–111 (2009)

    CAS  Article  Google Scholar 

  85. 85.

    Mazzafera P. 7-Methylxanthine is not involved in caffeine catabolism in Coffea dewevrei. J. Agr. Food Chem. 41: 1541–1543 (1993)

    CAS  Article  Google Scholar 

  86. 86.

    Mazzafera P, Crozier A, Sandberg G. Studies on the metabolic control of caffeine turnover in developing endosperms and leaves of Coffea arabica and Coffea dewevrei. J. Agr. Food Chem. 42: 1423–1427 (1994)

    CAS  Article  Google Scholar 

  87. 87.

    Misako K, Kouichi M. Caffeine synthase and related methyltransferases in plants. Front. Biosci. 9: 1833–1842 (2004).

    Article  Google Scholar 

  88. 88.

    Mizuno K, Kato M, Irino F, Yoneyama N, Fujimura T, Ashihara H. The first committed step reaction of caffeine biosynthesis: 7-Methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). FEBS Lett. 547: 56–60 (2003)

    CAS  Article  Google Scholar 

  89. 89.

    McCarthy AA, McCarthy JG. The structure of two Nmethyltransferases from the caffeine biosynthetic pathway. Plant Physiol. 144: 879–889 (2007)

    CAS  Article  Google Scholar 

  90. 90.

    Kato M, Mizuno K. Caffeine synthase and related methyltransferases in plants. Front. Biosci. 9: 1833–1842 (2004)

    CAS  Article  Google Scholar 

  91. 91.

    Fujimori N, Ashihara H. Adenine metabolism and the synthesis of purine alkaloids in flowers of Camellia plants. Phytochemistry 29: 3513–3516 (1990)

    CAS  Article  Google Scholar 

  92. 92.

    Fujimori N, Suzuki T, Ashihara H. Seasonal variations in biosynthetic capacity for the synthesis of caffeine in tea leaves. Phytochemistry 30: 2245–2248 (1991)

    CAS  Article  Google Scholar 

  93. 93.

    Li Y, Ogita S, Keya CA, Ashihara H. Expression of caffeine biosynthesis genes in tea (Camellia sinensis). Z. Naturforsch. C 63: 267–270 (2008)

    CAS  Google Scholar 

  94. 94.

    Mondal TK, Bhattacharya A, Ahuja PS, Chand PK. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 20: 712–720 (2001)

    CAS  Article  Google Scholar 

  95. 95.

    Sakanaka S. A novel convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column. J. Agr. Food Chem. 51: 3140–3143 (2003)

    CAS  Article  Google Scholar 

  96. 96.

    Chang CJ, Chiu KL, Chen YL, Chang CY. Separation of catechins from green tea using carbon dioxide extraction. Food Chem. 68: 109–113 (2000)

    CAS  Article  Google Scholar 

  97. 97.

    Liang H, Liang Y, Dong J, Lu J, Xu H, Wang H. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 101: 1451–1456 (2007)

    CAS  Article  Google Scholar 

  98. 98.

    Gokulakrishnan S, Chandraraj K, Gummadi SN. Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb. Tech. 37: 225–232 (2005)

    CAS  Article  Google Scholar 

  99. 99.

    Ramarethinam S, Rajalakshmi N. Caffeine in tea plants [Camellia sinensis (L.) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester. Indian J. Exp. Biol. 42: 575–580 (2004)

    CAS  Google Scholar 

  100. 100.

    Mazzafera P, Olsson O, Sandberg G. Degradation of caffeine and related methylxanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb. Ecol. 31: 199–207 (1994)

    Google Scholar 

  101. 101.

    Brand D, Pandey A, Roussos S, Soccol CR. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb. Tech. 27: 127–133 (2000)

    CAS  Article  Google Scholar 

  102. 102.

    Sahu NK, Shilakari G, Nayak A, Kohli DV. Antisense technology: A selective tool for gene expression regulation and gene targeting. Curr. Pharm. Biotechno. 8: 291–304 (2007)

    CAS  Article  Google Scholar 

  103. 103.

    Mohanpuria P, Rana NK, Yadav SK. Transient RNAi based gene silencing of glutathione synthetase reduces GSH levels in somatic embryos of Camellia sinensis L. Biol. Plant. 52: 381–384 (2008)

    CAS  Article  Google Scholar 

  104. 104.

    Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double stranded RNAs in invertebrate and vertebrate system. P. Natl. Acad. Sci. USA 98: 9742–9747 (2001)

    CAS  Article  Google Scholar 

  105. 105.

    Rana TM. Illuminating the silence: Understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Bio. 8: 23–35 (2007)

    CAS  Article  Google Scholar 

  106. 106.

    Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2: 279–289 (1990)

    CAS  Article  Google Scholar 

  107. 107.

    Waterhouse PM. The evolution and diversification of Dicers in plants. FEBS Lett. 580: 2442–2450 (2006)

    Article  CAS  Google Scholar 

  108. 108.

    Stanislawska J, Olszewski WL. RNA interference-significance and applications. Arch. Immunol. Ther. Ex. 53: 39–46 (2005)

    CAS  Google Scholar 

  109. 109.

    Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296: 1270–1273 (2002)

    CAS  Article  Google Scholar 

  110. 110.

    Hutvagner G. Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation. FEBS Lett. 579: 5850–5857 (2005)

    CAS  Article  Google Scholar 

  111. 111.

    Bartel DP. MicroRNAs genomics, biogenesis, mechanism, and function. Cell 116: 281–297 (2004)

    CAS  Article  Google Scholar 

  112. 112.

    Grewal SI, Elgin SC. Transcription and RNA interference in the formation of heterochromatin. Nature 447: 399–406 (2007)

    CAS  Article  Google Scholar 

  113. 113.

    Keyaa CA, Crozierb A, Ashihara H. Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. FEBS Lett. 554: 473–477 (2003)

    Article  CAS  Google Scholar 

  114. 114.

    Ashihara H, Zheng XQ, Katahira R, Morimoto M, Ogita S, Sano H. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of Nmethyltransferase genes. Phytochemistry 67: 882–886 (2006)

    CAS  Article  Google Scholar 

  115. 115.

    Jain NK. Impact of global advances in tea science and technology on economic parameters of tea industry. pp. 265–296. In: Global Advances in Tea Science. Jain NK (ed). Aravali Books International (P) Ltd., New Delhi, India (1999)

    Google Scholar 

  116. 116.

    Mondal TK, Bhattacharya A, Ahuja PS. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tiss. Org. 76: 194–254 (2004)

    Article  Google Scholar 

  117. 117.

    Biao Xi, Toru K, Jian Xu, Yongyan B. Effect of polyphenol compounds in tea transformations (abstract no. 314). In: Abstracts: American Society of Plant Physiologists, Plant Biology. April 30-May 2, American Society of Plant Physiologists, Rockville, MD, USA (1998)

  118. 118.

    Mondal TK, Bhattacharya A, Ahuja PS, Chand PK. Factor effecting Agrobacterium tumefaciens mediated transformation of tea (Camellia sinensis (L). O. Kuntze). Plant Cell Rep. 20: 712–720 (2001)

    CAS  Article  Google Scholar 

  119. 119.

    Sandal I, Saini U, Lacroix B, Bhattacharya A, Ahuja PS, Citovsky V. Agrobacterium-mediated genetic transformation of tea leaf explants: Effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Rep. 26: 169–176 (2007)

    CAS  Article  Google Scholar 

  120. 120.

    Prakash O, Sood A, Sharma M, Ahuja PS. Grafting micropropagated tea (Camellia sinensis (L.) O. Kuntze) shoots on tea seedling-a new approach to tea propagation. Plant Cell Rep. 18: 137–142 (1999)

    Google Scholar 

  121. 121.

    Bhattacharya A, Saini U, Ahuja PS. Transgenic tea. Int. J. Tea Sci. 5: 39–52 (2006)

    Google Scholar 

  122. 122.

    Bhattacharya A, Saini U, Sharma Preeti, Nagar PK, Ahuja PS. Osmotin-regulated reserve accumulation and germination in genetically transformed tea somatic embryos: A step towards regulation of stress tolerance and seed recalcitrance. Seed Sci. Res. 16: 203–211 (2006)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohanpuria, P., Kumar, V. & Yadav, S.K. Tea caffeine: Metabolism, functions, and reduction strategies. Food Sci Biotechnol 19, 275–287 (2010). https://doi.org/10.1007/s10068-010-0041-y

Download citation

Keywords

  • tea
  • caffeine
  • caffeine metabolism
  • tea improvement
  • gene silencing