Skip to main content

Advertisement

Log in

Impact of subcutaneous belimumab on disease activity, patient satisfaction, and metabolic profile in long-lasting systemic lupus erythematosus

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Atherosclerosis is a major complication of systemic lupus erythematosus (SLE) and is exacerbated by the disease itself, drug toxicity, and metabolic syndrome. Although belimumab (BEL) can ameliorate disease activity and reduce prednisolone (PSL) dose in SLE, its effect on metabolic profiles is obscure. We aimed to assess the effects of subcutaneous BEL on disease activity and metabolic profiles.

Methods

A total of 106 patients with SLE who received subcutaneous BEL were included, and 76 patients who started BEL treatment at least 1 year prior were evaluated. Clinical information, including retention rate, disease activity, renal outcome, patient satisfaction, and metabolic profiles, were retrospectively analysed.

Results

The retention rate of BEL was > 80% after 2 years, and ineffectiveness and pain were the major reasons for discontinuation of BEL treatment. Satisfaction with side effects was higher in the BEL group than that in the PSL group. Belimumab significantly improved disease activity, lupus nephritis, and PSL dosage, with a median reduction of 4 mg/day. These effects were observed in active disease and positive C1q-binding immune complex, and PSL reduction ≥ 5 mg was achievable in such cases. Patients with PSL reduction of ≥ 5 mg showed significantly lower blood low-density lipoprotein and triglyceride by 13 and 17 mg/dL, respectively, while those with PSL reduction of < 5 mg remained unaltered.

Conclusion

Subcutaneous BEL was effective in improving disease activity and proteinuria in patients with chronic disease while reducing PSL. Reduction in PSL by BEL also improved lipid status, which could synergistically reduce cardiovascular risk in SLE.

Key Points

• Significant reduction of disease activity, proteinuria, and prednisolone was observed in patients using subcutaneous belimumab.

• Patient satisfaction was higher in terms of side effects in subcutaneous belimumab compared with prednisolone.

• Reduction in prednisolone by belimumab contributed to the improvement of lipid status and would reduce the cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article will be shared upon reasonable request from the corresponding author.

References

  1. Tian J, Zhang D, Yao X, Huang Y, Lu Q (2023) Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis 82(3):351–356. https://doi.org/10.1136/ard-2022-223035

    Article  PubMed  Google Scholar 

  2. Dennis GJ (2012) Belimumab: a BLyS-specific inhibitor for the treatment of systemic lupus erythematosus. Clin Pharmacol Ther 91(1):143–149. https://doi.org/10.1038/clpt.2011.290

    Article  PubMed  CAS  Google Scholar 

  3. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285(5425):260–263. https://doi.org/10.1126/science.285.5425.260

    Article  PubMed  CAS  Google Scholar 

  4. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189(11):1747–1756. https://doi.org/10.1084/jem.189.11.1747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gladman DD, Urowitz MB, Rahman P, Ibañez D, Tam LS (2003) Accrual of organ damage over time in patients with systemic lupus erythematosus. J Rheumatol 30(9):1955–1959

    PubMed  Google Scholar 

  6. Hong J, Maron DJ, Shirai T, Weyand CM (2015) Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions. Int J Clin Rheumtol 10(5):365–381. https://doi.org/10.2217/ijr.15.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation–from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151. https://doi.org/10.3109/08916934.2015.1027815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, Goronzy JJ, Weyand CM (2016) The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 213(3):337–354. https://doi.org/10.1084/jem.20150900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zen M, Iaccarino L, Gatto M, Bettio S, Nalotto L, Ghirardello A, Punzi L, Doria A (2015) Prolonged remission in Caucasian patients with SLE: prevalence and outcomes. Ann Rheum Dis 74(12):2117–2122. https://doi.org/10.1136/annrheumdis-2015-207347

    Article  PubMed  CAS  Google Scholar 

  10. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, León MG, Tanasescu C, Nasonov E, Lan JL, Pineda L, Zhong ZJ, Freimuth W, Petri MA (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377(9767):721–731. https://doi.org/10.1016/s0140-6736(10)61354-2

    Article  PubMed  CAS  Google Scholar 

  11. van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, Zhong ZJ, Freimuth W (2012) Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 71(8):1343–1349. https://doi.org/10.1136/annrheumdis-2011-200937

    Article  PubMed  CAS  Google Scholar 

  12. Furie R, Rovin BH, Houssiau F, Contreras G, Teng YKO, Curtis P, Green Y, Okily M, Madan A, Roth DA (2022) Safety and efficacy of belimumab in patients with lupus nephritis: open-label extension of BLISS-LN study. Clin J Am Soc Nephrol 17(11):1620–1630. https://doi.org/10.2215/cjn.02520322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Escalera CR, Guisado ÁMZ, Mateo FJ, Bahamontes-Rosa N, Villanueva MJG (2022) Use of belimumab in real-world in Spain: a scoping review about characteristics of SLE patients. Clin Rheumatol 41(11):3373–3382. https://doi.org/10.1007/s10067-022-06287-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, Smolen JS, Wofsy D, Boumpas DT, Kamen DL, Jayne D, Cervera R, Costedoat-Chalumeau N, Diamond B, Gladman DD, Hahn B, Hiepe F, Jacobsen S, Khanna D, Lerstrøm K, Massarotti E, McCune J, Ruiz-Irastorza G, Sanchez-Guerrero J, Schneider M, Urowitz M, Bertsias G, Hoyer BF, Leuchten N, Tani C, Tedeschi SK, Touma Z, Schmajuk G, Anic B, Assan F, Chan TM, Clarke AE, Crow MK, Czirják L, Doria A, Graninger W, Halda-Kiss B, Hasni S, Izmirly PM, Jung M, Kumánovics G, Mariette X, Padjen I, Pego-Reigosa JM, Romero-Diaz J, Rúa-Figueroa Fernández Í, Seror R, Stummvoll GH, Tanaka Y, Tektonidou MG, Vasconcelos C, Vital EM, Wallace DJ, Yavuz S, Meroni PL, Fritzler MJ, Naden R, Dörner T, Johnson SR (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol 71(9):1400–1412. https://doi.org/10.1002/art.40930

  15. Atkinson MJ, Kumar R, Cappelleri JC, Hass SL (2005) Hierarchical construct validity of the treatment satisfaction questionnaire for medication (TSQM version II) among outpatient pharmacy consumers. Value Health 8(Suppl 1):S9-s24. https://doi.org/10.1111/j.1524-4733.2005.00066.x

    Article  PubMed  Google Scholar 

  16. Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  17. Ugarte-Gil MF, Gamboa-Cardenas RV, Reátegui-Sokolova C, Pimentel-Quiroz VR, Medina M, Elera-Fitzcarrald C, Zevallos F, Pastor-Asurza CA, Lofland J, Zazzetti F, Karyekar CS, Alarcón GS, Perich-Campos RA (2022) LLDAS (lupus low disease activity state) and/or remission are associated with less damage accrual in patients with systemic lupus erythematosus from a primarily Mestizo population: data from the Almenara Lupus Cohort. Lupus Sci Med 9(1). https://doi.org/10.1136/lupus-2021-000616

  18. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, Sanchez-Guerrero J, Schwarting A, Merrill JT, Chatham WW, Stohl W, Ginzler EM, Hough DR, Zhong ZJ, Freimuth W, van Vollenhoven RF (2011) A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63(12):3918–3930. https://doi.org/10.1002/art.30613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tanaka Y, Atsumi T, Okada M, Miyamura T, Ishii T, Nishiyama S, Matsumura R, Kawakami A, Hayashi N, Abreu G, Yavuz S, Lindholm C, Al-Mossawi H, Takeuchi T (2023) The long-term safety and tolerability of anifrolumab for patients with systemic lupus erythematosus in Japan: TULIP-LTE subgroup analysis. Mod Rheumatol. https://doi.org/10.1093/mr/road092

    Article  PubMed  Google Scholar 

  20. Tanaka Y, Bass D, Chu M, Egginton S, Ji B, Struemper H, Roth D (2019) Efficacy and safety of intravenous belimumab in Japanese patients with systemic lupus erythematosus: a subgroup analysis of a phase 3 randomized placebo-controlled trial. Mod Rheumatol 29(3):452–460. https://doi.org/10.1080/14397595.2018.1480915

    Article  PubMed  CAS  Google Scholar 

  21. Dima A, Jurcut C, Chasset F, Felten R, Arnaud L (2022) Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther Adv Musculoskelet Dis 14:1759720x211073001. https://doi.org/10.1177/1759720x211073001

  22. Hosokawa Y, Oiwa H (2020) Continuation rate, safety and efficacy of hydroxychloroquine treatment in a retrospective cohort of systemic lupus erythematosus in a Japanese municipal hospital. Intern Med 59(20):2485–2490. https://doi.org/10.2169/internalmedicine.5042-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Manzi S, Sánchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, Ginzler EM, D’Cruz DP, Doria A, Cooper S, Zhong ZJ, Hough D, Freimuth W, Petri MA (2012) Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis 71(11):1833–1838. https://doi.org/10.1136/annrheumdis-2011-200831

    Article  PubMed  CAS  Google Scholar 

  24. Furie R, Rovin BH, Houssiau F, Malvar A, Teng YKO, Contreras G, Amoura Z, Yu X, Mok CC, Santiago MB, Saxena A, Green Y, Ji B, Kleoudis C, Burriss SW, Barnett C, Roth DA (2020) Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med 383(12):1117–1128. https://doi.org/10.1056/NEJMoa2001180

    Article  PubMed  CAS  Google Scholar 

  25. Collins CE, Cortes-Hernández J, Garcia MA, von Kempis J, Schwarting A, Touma Z, Kurtinecz M, Gairy K (2020) Real-world effectiveness of belimumab in the treatment of systemic lupus erythematosus: pooled analysis of multi-country data from the OBSErve studies. Rheumatol Ther 7(4):949–965. https://doi.org/10.1007/s40744-020-00243-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang SP, Snedecor SJ, Nanji S, Lloyd E, Bell CF (2022) Real-world effectiveness of belimumab in systemic lupus erythematosus: a systematic literature review. Rheumatol Ther 9(4):975–991. https://doi.org/10.1007/s40744-022-00454-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu X, Chen N, Xue J, Mok CC, Bae SC, Peng X, Chen W, Ren H, Li X, Noppakun K, Gilbride JA, Green Y, Ji B, Liu C, Madan A, Okily M, Tang CH, Roth DA (2023) Efficacy and safety of belimumab in patients with lupus nephritis: subgroup analyses of a phase 3 randomized trial in the east Asian population. Am J Kidney Dis 81(3):294-306.e291. https://doi.org/10.1053/j.ajkd.2022.06.013

    Article  PubMed  CAS  Google Scholar 

  28. Collins CE, Dall’Era M, Kan H, Macahilig C, Molta C, Koscielny V, Chang DJ (2016) Response to belimumab among patients with systemic lupus erythematosus in clinical practice settings: 24-month results from the OBSErve study in the USA. Lupus Sci Med 3(1):e000118. https://doi.org/10.1136/lupus-2015-000118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu J, Mackie SL, Pujades-Rodriguez M (2020) Glucocorticoid dose-dependent risk of type 2 diabetes in six immune-mediated inflammatory diseases: a population-based cohort analysis. BMJ Open Diabetes Res Care 8(1). https://doi.org/10.1136/bmjdrc-2020-001220

  30. Atik N, Hayati RU, Hamijoyo L (2020) Correlation between steroid therapy and lipid profile in systemic lupus erythematosus patients. Open Access Rheumatol 12:41–46. https://doi.org/10.2147/oarrr.s245662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Siegert C, Daha M, Westedt ML, van der Voort E, Breedveld F (1991) IgG autoantibodies against C1q are correlated with nephritis, hypocomplementemia, and dsDNA antibodies in systemic lupus erythematosus. J Rheumatol 18(2):230–234

    PubMed  CAS  Google Scholar 

  32. Haseley LA, Wisnieski JJ, Denburg MR, Michael-Grossman AR, Ginzler EM, Gourley MF, Hoffman JH, Kimberly RP, Salmon JE (1997) Antibodies to C1q in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles. Kidney Int 52(5):1375–1380. https://doi.org/10.1038/ki.1997.464

    Article  PubMed  CAS  Google Scholar 

  33. Sinico RA, Radice A, Ikehata M, Giammarresi G, Corace C, Arrigo G, Bollini B, Li Vecchi M (2005) Anti-C1q autoantibodies in lupus nephritis: prevalence and clinical significance. Ann N Y Acad Sci 1050:193–200. https://doi.org/10.1196/annals.1313.020

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Moroni G, Trendelenburg M, Del Papa N, Quaglini S, Raschi E, Panzeri P, Testoni C, Tincani A, Banfi G, Balestrieri G, Schifferli JA, Meroni PL, Ponticelli C (2001) Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis. Am J Kidney Dis 37(3):490–498. https://doi.org/10.1053/ajkd.2001.22071

    Article  PubMed  CAS  Google Scholar 

  35. Akita K, Yasaka K, Shirai T, Ishii T, Harigae H, Fujii H (2020) Interferon alpha enhances B cell activation associated with FOXM1 induction: potential novel therapeutic strategy for targeting the plasmablasts of systemic lupus erythematosus. Front Immunol 11:498703. https://doi.org/10.3389/fimmu.2020.498703

    Article  PubMed  CAS  Google Scholar 

  36. Shirai T, Fujii H, Ono M, Nakamura K, Watanabe R, Tajima Y, Takasawa N, Ishii T, Harigae H (2012) A novel autoantibody against fibronectin leucine-rich transmembrane protein 2 expressed on the endothelial cell surface identified by retroviral vector system in systemic lupus erythematosus. Arthritis Res Ther 14(4):R157. https://doi.org/10.1186/ar3897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yasaka K, Yamazaki T, Sato H, Shirai T, Cho M, Ishida K, Ito K, Tanaka T, Ogasawara K, Harigae H, Ishii T, Fujii H (2023) Phospholipase D4 as a signature of toll-like receptor 7 or 9 signaling is expressed on blastic T-bet + B cells in systemic lupus erythematosus. Arthritis Res Ther 25(1):200. https://doi.org/10.1186/s13075-023-03186-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Beaupere C, Liboz A, Fève B, Blondeau B, Guillemain G (2021) Molecular mechanisms of glucocorticoid-induced insulin resistance. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020623

  39. Li JX, Cummins CL (2022) Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat Rev Endocrinol 18(9):540–557. https://doi.org/10.1038/s41574-022-00683-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Peckett AJ, Wright DC, Riddell MC (2011) The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60(11):1500–1510. https://doi.org/10.1016/j.metabol.2011.06.012

    Article  PubMed  CAS  Google Scholar 

  41. Floris A, Chessa E, Sebastiani GD, Prevete I, Iannone F, Coladonato L, Govoni M, Bortoluzzi A, Mosca M, Tani C, Doria A, Iaccarino L, Franceschini F, Fredi M, Conti F, Spinelli FR, Bellisai F, D'Alessandro R, Zanetti A, Carrara G, Scirè CA, Cauli A, Piga M (2022) Glucocorticoid tapering and associated outcome in patients with newly diagnosed systemic lupus erythematosus: the real-world GULP prospective observational study. RMD Open 8(2). https://doi.org/10.1136/rmdopen-2022-002701

  42. Kopin L, Lowenstein C (2017) Dyslipidemia. Ann Intern Med 167(11):Itc81-itc96. https://doi.org/10.7326/aitc201712050

  43. Lu Y, Li SX, Liu Y, Rodriguez F, Watson KE, Dreyer RP, Khera R, Murugiah K, D’Onofrio G, Spatz ES, Nasir K, Masoudi FA, Krumholz HM (2022) Sex-specific risk factors associated with first acute myocardial infarction in young adults. JAMA Netw Open 5(5):e229953. https://doi.org/10.1001/jamanetworkopen.2022.9953

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lu S, Xie Q, Kuang M, Hu C, Li X, Yang H, Sheng G, Xie G, Zou Y (2023) Lipid metabolism, BMI and the risk of nonalcoholic fatty liver disease in the general population: evidence from a mediation analysis. J Transl Med 21(1):192. https://doi.org/10.1186/s12967-023-04047-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Weldegiorgis M, Woodward M (2022) Elevated triglycerides and reduced high-density lipoprotein cholesterol are independently associated with the onset of advanced chronic kidney disease: a cohort study of 911,360 individuals from the United Kingdom. BMC Nephrol 23(1):312. https://doi.org/10.1186/s12882-022-02932-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Reitz C (2013) Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep 15(3):307. https://doi.org/10.1007/s11883-012-0307-3

    Article  MathSciNet  PubMed  PubMed Central  CAS  Google Scholar 

  47. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278. https://doi.org/10.1016/s0140-6736(05)67394-1

    Article  PubMed  CAS  Google Scholar 

  48. (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Jama 285(19):2486–2497. https://doi.org/10.1001/jama.285.19.2486

  49. Campos-López B, Meza-Meza MR, Parra-Rojas I, Ruiz-Ballesteros AI, Vizmanos-Lamotte B, Muñoz-Valle JF, Montoya-Buelna M, Cerpa-Cruz S, Bernal-Hernández LE, De la Cruz-Mosso U (2021) Association of cardiometabolic risk status with clinical activity and damage in systemic lupus erythematosus patients: a cross-sectional study. Clin Immunol 222:108637. https://doi.org/10.1016/j.clim.2020.108637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Department of Rheumatology, Tohoku University Hospital, for their helpful discussions

Funding

This work was partly supported by JSPS KAKENHI Grant Number 21K08469T and the JCR Grant for Promoting Research for D2T RA, which are also associated with open-access initiatives.

Author information

Authors and Affiliations

Authors

Contributions

MY and TS had full access to all data in the study and took responsibility for the integrity and accuracy of the data analysis. Concept and design: MY and TS. Acquisition, analysis, or interpretation of data: all authors. Manuscript drafting: MY. Critical revision of the manuscript for intellectual content: all authors. Statistical analysis: all authors. Obtained funding: TS. All the authors contributed to the manuscript and approved the submitted version.

Corresponding author

Correspondence to Tsuyoshi Shirai.

Ethics declarations

Ethics approval

The study protocol complied with the principles of the Declaration of Helsinki and was approved by the Ethics Committee of Tohoku University Graduate School of Medicine (reference number: 2022–1-775). Written informed consent was not required because of the retrospective observational nature of the study.

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 140 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamato, M., Shirai, T., Ishii, Y. et al. Impact of subcutaneous belimumab on disease activity, patient satisfaction, and metabolic profile in long-lasting systemic lupus erythematosus. Clin Rheumatol 43, 1023–1035 (2024). https://doi.org/10.1007/s10067-024-06904-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-024-06904-9

Keywords

Navigation