Skip to main content

Advertisement

Log in

Global trends in research of melanoma differentiation-associated gene 5: a bibliometric analysis from 2002 to 2022

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

Melanoma differentiation-associated gene 5 (MDA5), as a cytoplasmic sensor for viral double-stranded RNAs, has received increasing attention in recent years. Although considerable headway has been made on the functional role of MDA5 in antiviral immunity and autoimmune disease, the available literature is insufficient to assess the vast field.

Methods

This study performed a bibliometric analysis to investigate current hotspots in the global scientific output of MDA5 over the past two decades. Related publications and recorded information from 2002 to 2022 in the Web of Science Core Collection (WoSCC) database were retrieved. VOSviewer and CiteSpace were used for quantitative evaluation and visualization.

Results

A total of 2267 original articles and reviews were obtained, and the annual number of publications related to MDA5 was increasing rapidly. China has published the most papers, while the USA was the most influential country with the most citations and the highest H-index. The Chinese Academy of Sciences, the United States Department of Health and Human Services, and the Journal of Virology were the most prolific research affiliation, funding source, and journal, respectively. Fujita T (Kyoto University) was the most productive author with the highest H-index and had close cooperation with Kato H and Yoneyama M. The keywords “RIG-I,” “MDA5,” “innate immunity,” “double-stranded-RNA,” and “recognition” had the highest frequency, while “dermatomyositis” as well as “autoantibody” seemed to be the emerging hotspots.

Conclusion

This study comprehensively demonstrated the research frontiers of MDA5 and will provide a useful resource for scholars to conduct future decisions.

Key Points

  • We conducted the first in-depth survey of the research frontiers on melanoma differentiation-associated gene 5 (MDA5) over the past two decades via bibliometric analysis.

  • We found that many early breakthroughs have been made in the mechanism of MDA5-mediated antiviral immune responses, and the role of MDA5 in autoimmune and autoinflammatory diseases has raised the recent concern.

  • We identified that the virus infection-associated pathogenesis and effective therapeutic strategy of anti-MDA5 antibody-positive dermatomyositis will remain the hotspots in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Abbreviations

MDA5:

Melanoma differentiation-associated gene 5

CARD:

Caspase recruitment domain

PRR:

Pattern-recognition receptor

RPILD:

Rapidly progressive interstitial lung disease

DM:

Dermatomyositis

RLRs:

RIG-I-like receptors

Nc:

Number of citations

Ac:

Average citation per item

Np:

Number of publications

GCS:

Global citation score

MAVS:

Mitochondrial antiviral signaling protein

TRAF:

Tumor necrosis factor receptor-associated factors

MSAs:

Myositis-specific autoantibodies

References

  1. Kang DC, Gopalkrishnan RV, Wu Q et al (2002) mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci USA 99:637–642. https://doi.org/10.1073/pnas.022637199

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  2. Kang DC, Gopalkrishnan RV, Lin L et al (2004) Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene 23:1789–1800. https://doi.org/10.1038/sj.onc.1207300

    Article  PubMed  CAS  Google Scholar 

  3. Andrejeva J, Childs KS, Young DF et al (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci USA 101:17264–17269. https://doi.org/10.1073/pnas.0407639101

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  4. Gitlin L, Barchet W, Gilfillan S et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA 103:8459–8464. https://doi.org/10.1073/pnas.0603082103

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  5. Cunninghame Graham DS, Morris DL, Bhangale TR et al (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7:e1002341. https://doi.org/10.1371/journal.pgen.1002341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440. https://doi.org/10.1038/nri3850

    Article  PubMed  CAS  Google Scholar 

  7. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619. https://doi.org/10.1038/ng1800

    Article  PubMed  CAS  Google Scholar 

  8. Chiappinelli KB, Strissel PL, Desrichard A et al (2017) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 169:361. https://doi.org/10.1016/j.cell.2017.03.036

    Article  PubMed  CAS  Google Scholar 

  9. Xu L, Wang L, Lv C et al (2021) Anti-MDA-5-positive dermatomyositis associated rapidly progressive interstitial lung disease, a virus-triggered autoimmune-like symptom? Rheumatology 60:4428–4429. https://doi.org/10.1093/rheumatology/keab224

    Article  PubMed  Google Scholar 

  10. Gono T, Okazaki Y, Kuwana M (2022) Antiviral proinflammatory phenotype of monocytes in anti-MDA5 antibody-associated interstitial lung disease. Rheumatology (Oxford) 61:806–814. https://doi.org/10.1093/rheumatology/keab371

    Article  PubMed  CAS  Google Scholar 

  11. Wu F, Gao J, Kang J et al (2022) Knowledge mapping of exosomes in autoimmune diseases: a bibliometric analysis (2002-2021). Front Immunol 13:939433. https://doi.org/10.3389/fimmu.2022.939433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  13. Synnestvedt MB, Chen C, Holmes JH (2005) CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc 2005:724–728

    PubMed  PubMed Central  Google Scholar 

  14. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  PubMed  Google Scholar 

  15. Hamel R, Dejarnac O, Wichit S et al (2015) Biology of Zika virus infection in human skin cells. J Virol 89:8880–8896. https://doi.org/10.1128/JVI.00354-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lei X, Dong X, Ma R et al (2020) Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun 11:3810. https://doi.org/10.1038/s41467-020-17665-9

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  17. Soy M, Keser G, Atagunduz P et al (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 39:2085–2094. https://doi.org/10.1007/s10067-020-05190-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488. https://doi.org/10.1146/annurev-immunol-032713-120156

    Article  PubMed  CAS  Google Scholar 

  19. Liddicoat BJ, Piskol R, Chalk AM et al (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120. https://doi.org/10.1126/science.aac7049

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  20. Goubau D, Schlee M, Deddouche S et al (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514:372–375. https://doi.org/10.1038/nature13590

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  21. Yoneyama M, Onomoto K, Jogi M et al (2015) Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol 32:48–53. https://doi.org/10.1016/j.coi.2014.12.012

    Article  PubMed  CAS  Google Scholar 

  22. Tan XJ, Sun LJ, Chen JQ et al (2018) Detection of microbial infections through innate immune sensing of nucleic acids. Annu Rev Microbiol 72(72):447–478. https://doi.org/10.1146/annurev-micro-102215-095605

    Article  PubMed  CAS  Google Scholar 

  23. Roulois D, Loo Yau H, Singhania R et al (2015) DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–973. https://doi.org/10.1016/j.cell.2015.07.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ishizuka JJ, Manguso RT, Cheruiyot CK et al (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565:43–48. https://doi.org/10.1038/s41586-018-0768-9

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105. https://doi.org/10.1038/nature04734

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Kato H, Takeuchi O, Mikamo-Satoh E et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610. https://doi.org/10.1084/jem.20080091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kawai T, Takahashi K, Sato S et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988. https://doi.org/10.1038/ni1243

    Article  PubMed  CAS  Google Scholar 

  28. Meylan E, Curran J, Hofmann K et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172. https://doi.org/10.1038/nature04193

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. https://doi.org/10.1126/science.1132505

    Article  PubMed  ADS  Google Scholar 

  30. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. https://doi.org/10.1038/nature07725

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  31. Pichlmair A, Schulz O, Tan CP et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001. https://doi.org/10.1126/science.1132998

    Article  PubMed  ADS  CAS  Google Scholar 

  32. Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858. https://doi.org/10.4049/jimmunol.175.5.2851

    Article  PubMed  CAS  Google Scholar 

  33. Schoggins JW, Wilson SJ, Panis M et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. https://doi.org/10.1038/nature09907

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  34. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692. https://doi.org/10.1016/j.immuni.2011.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kleinberg J (2003) Bursty and hierarchical structure in streams. Data Min Knowl Discov 7:373–397. https://doi.org/10.1023/A:1024940629314

    Article  MathSciNet  Google Scholar 

  36. Kato H, Sato S, Yoneyama M et al (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28. https://doi.org/10.1016/j.immuni.2005.04.010

    Article  PubMed  CAS  Google Scholar 

  37. Yoneyama M, Kikuchi M, Natsukawa T et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737. https://doi.org/10.1038/ni1087

    Article  PubMed  CAS  Google Scholar 

  38. Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20:537–551. https://doi.org/10.1038/s41577-020-0288-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tsuji H, Nakashima R, Hosono Y et al (2020) Multicenter prospective study of the efficacy and safety of combined immunosuppressive therapy with high-dose glucocorticoid, tacrolimus, and cyclophosphamide in interstitial lung diseases accompanied by anti-melanoma differentiation-associated gene 5-positive dermatomyositis. Arthritis Rheumatol 72:488–498. https://doi.org/10.1002/art.41105

    Article  PubMed  CAS  Google Scholar 

  40. Lundberg IE, Tjarnlund A, Bottai M et al (2017) 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol 69:2271–2282. https://doi.org/10.1002/art.40320

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dias Junior AG, Sampaio NG, Rehwinkel J (2019) A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27:75–85. https://doi.org/10.1016/j.tim.2018.08.007

    Article  PubMed  CAS  Google Scholar 

  42. Wu B, Peisley A, Richards C et al (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–289. https://doi.org/10.1016/j.cell.2012.11.048

    Article  PubMed  CAS  Google Scholar 

  43. Pichlmair A, Schulz O, Tan CP et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769. https://doi.org/10.1128/JVI.00770-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Halilu F, Christopher-Stine L (2022) Myositis-specific antibodies: overview and clinical utilization. Rheumatol Immunol Res 3:1–10. https://doi.org/10.2478/rir-2022-0001

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lundberg IE, Fujimoto M, Vencovsky J et al (2021) Idiopathic inflammatory myopathies. Nat Rev Dis Primers 7:86. https://doi.org/10.1038/s41572-021-00321-x

    Article  PubMed  Google Scholar 

  46. Sato S, Hirakata M, Kuwana M et al (2005) Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum 52:1571–1576. https://doi.org/10.1002/art.21023

    Article  PubMed  CAS  Google Scholar 

  47. Lin JM, Zhang YB, Peng QL et al (2017) Genetic association of HLA-DRB1 multiple polymorphisms with dermatomyositis in Chinese population. Hla 90:354–359. https://doi.org/10.1111/tan.13171

    Article  PubMed  CAS  Google Scholar 

  48. Gono T, Kawaguchi Y, Kuwana M et al (2012) Brief report: association of HLA-DRB1*0101/*0405 with susceptibility to anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis in the Japanese population. Arthritis Rheum 64:3736–3740. https://doi.org/10.1002/art.34657

    Article  PubMed  CAS  Google Scholar 

  49. Kochi Y, Kamatani Y, Kondo Y et al (2018) Splicing variant of WDFY4 augments MDA5 signalling and the risk of clinically amyopathic dermatomyositis. Ann Rheum Dis 77:602–611. https://doi.org/10.1136/annrheumdis-2017-212149

    Article  PubMed  CAS  Google Scholar 

  50. Theisen DJ, Davidson JT, Briseno CG et al (2018) WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:694-+. https://doi.org/10.1126/science.aat5030

  51. Nishina N, Sato S, Masui K et al (2020) Seasonal and residential clustering at disease onset of anti-MDA5-associated interstitial lung disease. RMD Open 6. https://doi.org/10.1136/rmdopen-2020-001202

  52. Hu H, Yang H, Liu Y et al (2021) Pathogenesis of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis: a concise review with an emphasis on type I interferon system. Front Med (Lausanne) 8:833114. https://doi.org/10.3389/fmed.2021.833114

    Article  PubMed  Google Scholar 

  53. He C, Chen J, Luo X et al (2021) Evaluation of biomarkers related to endothelial dysfunction: proof of vasculopathy in anti-melanoma differentiation-associated gene 5 dermatomyositis. Clin Exp Rheumatol 39:151–157. https://doi.org/10.55563/clinexprheumatol/ubov8b

    Article  PubMed  Google Scholar 

  54. Wenzel J, Schmidt R, Proelss J et al (2006) Type I interferon-associated skin recruitment of CXCR3+ lymphocytes in dermatomyositis. Clin Exp Dermatol 31:576–582. https://doi.org/10.1111/j.1365-2230.2006.02150.x

    Article  PubMed  CAS  Google Scholar 

  55. Takada T, Aoki A, Asakawa K et al (2015) Serum cytokine profiles of patients with interstitial lung disease associated with anti-CADM-140/MDA5 antibody positive amyopathic dermatomyositis. Respir Med 109:1174–1180. https://doi.org/10.1016/j.rmed.2015.07.004

    Article  PubMed  Google Scholar 

  56. Ishida Y, Kimura A, Nosaka M et al (2017) Essential involvement of the CX3CL1-CX3CR1 axis in bleomycin-induced pulmonary fibrosis via regulation of fibrocyte and M2 macrophage migration. Sci Rep 7:16833. https://doi.org/10.1038/s41598-017-17007-8

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  57. Wang Y, Du G, Zhang G et al (2022) Similarities and differences between severe COVID-19 pneumonia and anti-MDA-5-positive dermatomyositis-associated rapidly progressive interstitial lung diseases: a challenge for the future. Ann Rheum Dis 81:e192. https://doi.org/10.1136/annrheumdis-2020-218594

    Article  PubMed  Google Scholar 

  58. Bojkova D, Bechtel M, Rothenburger T et al (2023) Omicron-induced interferon signaling prevents influenza A H1N1 and H5N1 virus infection. J Med Virol 95:e28686. https://doi.org/10.1002/jmv.28686

    Article  PubMed  CAS  Google Scholar 

  59. Wang G, Wang Q, Wang Y et al (2021) Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: a retrospective cohort study. Front Immunol 12:791348. https://doi.org/10.3389/fimmu.2021.791348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Coutant F, Bachet R, Pin JJ et al (2022) Monoclonal antibodies from B cells of patients with anti-MDA5 antibody-positive dermatomyositis directly stimulate interferon gamma production. J Autoimmun 130:102831. https://doi.org/10.1016/j.jaut.2022.102831

    Article  PubMed  CAS  Google Scholar 

  61. Ishikawa Y, Iwata S, Hanami K et al (2018) Relevance of interferon-gamma in pathogenesis of life-threatening rapidly progressive interstitial lung disease in patients with dermatomyositis. Arthritis Res Ther 20:240. https://doi.org/10.1186/s13075-018-1737-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Allenbach Y, Uzunhan Y, Toquet S et al (2020) Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: study of 121 cases. Neurology 95:e70–ee8. https://doi.org/10.1212/WNL.0000000000009727

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lv X, Jin Y, Zhang D et al (2021) Low circulating monocytes is in parallel with lymphopenia which predicts poor outcome in anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis-associated interstitial lung disease. Front Med (Lausanne) 8:808875. https://doi.org/10.3389/fmed.2021.808875

    Article  PubMed  Google Scholar 

  64. Xu W, Wu W, Zheng Y et al (2021) A computed tomography radiomics-based prediction model on interstitial lung disease in anti-MDA5-positive dermatomyositis. Front Med (Lausanne) 8:768052. https://doi.org/10.3389/fmed.2021.768052

    Article  PubMed  Google Scholar 

  65. Ouyang ZM, Lin JZ, Tang AJ et al (2022) A matrix prediction model for the 6-month mortality risk in patients with anti-melanoma differentiation-associated protein-5-positive dermatomyositis. Front Med (Lausanne) 9:860798. https://doi.org/10.3389/fmed.2022.860798

    Article  PubMed  Google Scholar 

  66. Ida T, Furuta S, Takayama A et al (2023) Efficacy and safety of dose escalation of tofacitinib in refractory anti-MDA5 antibody-positive dermatomyositis. RMD Open 9. https://doi.org/10.1136/rmdopen-2022-002795

Download references

Funding

This work was supported in part by the Chinese National Key Technology R&D Program, Ministry of Science and Technology [2022YFC2504600-6, 2021YFC2501301-6], CAMS Innovation Fund for Medical Sciences (CIFMS) [2021-I2M-1-005], and National High Level Hospital Clinical Research Funding [2022-PUMCH-C-020, 2022-PUMCH-D-009].

Author information

Authors and Affiliations

Authors

Contributions

QW and XFZ contributed to the design of the study and performed the supervision. XTY did this bibliometrics analysis and wrote the initial draft of the manuscript. JS, ZP, LYP, SZ, CYW, JLZ, DX, and MTL reviewed and edited the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Qian Wang or Xiaofeng Zeng.

Ethics declarations

Ethics approval and consent to participate

This study did not include patients as participants in the research; therefore, ethical approval was not required.

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Shi, J., Peng, Z. et al. Global trends in research of melanoma differentiation-associated gene 5: a bibliometric analysis from 2002 to 2022. Clin Rheumatol 43, 1111–1126 (2024). https://doi.org/10.1007/s10067-023-06851-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06851-x

Keywords

Navigation