Skip to main content

Advertisement

Log in

Vascular effects of biologic and targeted synthetic antirheumatic drugs approved for rheumatoid arthritis: a systematic review

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

Rheumatoid arthritis (RA) increases the risk of cardiovascular disease (CVD), with inflammation playing a key role. Biologic and targeted synthetic drugs used to treat RA can induce systemic immunomodulation and may have pleiotropic effects on vascular function, making it crucial to investigate their impact on CVD risk in RA patients.

Methods

A systematic review of the literature was conducted to investigate the impact of biologic and targeted synthetic treatments approved for RA on various cardiovascular markers, including endothelial function, arterial stiffness, and subclinical atherosclerosis. Our analysis included a search of the MedLine (via PubMed) and Web of Science databases using a pre-determined search strategy. We conducted a narrative synthesis of the included studies due to heterogeneity in study design and outcome measures.

Results

From an initial pool of 647 records, we excluded 327 studies based on their titles and abstracts, and we selected 182 studies for final examination. Ultimately, 58 articles met our inclusion criteria and were included in our systematic review. Our analysis of these studies revealed a positive effect of biologic and targeted synthetic therapies on vascular dysfunction associated with RA. However, the impact of these treatments on subclinical atherosclerosis was inconsistent.

Conclusion

Overall, our systematic review provides important insights into the potential cardiovascular benefits of biologic and targeted synthetic treatments for RA by a still unknown mechanism. These findings can inform clinical practice and contribute to our understanding of their possible effects on early vascular pathology.

Key Points

• Great heterogeneity of methods are used to evaluate the endothelial function and arterial stiffness in patients with RA on biologic and targeted synthetic antirheumatic drugs.

• Most studies have shown a considerable improvement in endothelial function and arterial stiffness with TNFi, despite some studies reporting only transient or no improvement.

• Anakinra and tocilizumab may have a beneficial effect on vascular function and endothelial injury, as indicated by increased FMD, coronary flow reserve, and reduced levels of biomarkers of endothelial function, while the overall impact of JAKi and rituximab remains inconclusive based on the reviewed studies.

• To fully comprehend the distinctions between biologic therapies, more long-term, well-designed clinical trials are necessary using a homogeneous methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A et al (2017) Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross R (1999) Atherosclerosis — An Inflammatory Disease. N EnglJ Med 340:115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  Google Scholar 

  3. Ridker PM (2019) Anticytokine Agents. Circ Res 124:437–450. https://doi.org/10.1161/CIRCRESAHA.118.313129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tocci G, Goletti D, Marino V et al (2016) Cardiovascular outcomes and tumour necrosis factor antagonists in chronic inflammatory rheumatic disease: a focus on rheumatoid arthritis. Expert Opin Drug Saf 15:55–61. https://doi.org/10.1080/14740338.2016.1218469

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka T, Kishimoto T (2014) The Biology and Medical Implications of Interleukin-6. Cancer Immunol Res 2:288–294. https://doi.org/10.1158/2326-6066.CIR-14-0022

    Article  CAS  PubMed  Google Scholar 

  6. Meyer PW, Anderson R, Ker JA, Ally MT (2018) Rheumatoid arthritis and risk of cardiovascular disease. Cardiovasc J Afr 29:317–321. https://doi.org/10.5830/CVJA-2018-018

    Article  PubMed  Google Scholar 

  7. Almutairi K, Nossent J, Preen D et al (2021) The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol Int 41:863–877. https://doi.org/10.1007/s00296-020-04731-0

    Article  PubMed  Google Scholar 

  8. Løgstrup BB, Ellingsen T, Pedersen AB et al (2021) Cardiovascular risk and mortality in rheumatoid arthritis compared with diabetes mellitus and the general population. Rheumatology 60:1400–1409. https://doi.org/10.1093/rheumatology/keaa374

    Article  CAS  PubMed  Google Scholar 

  9. Agca R, Heslinga SC, Rollefstad S et al (2017) EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 76:17–28. https://doi.org/10.1136/annrheumdis-2016-209775

    Article  CAS  PubMed  Google Scholar 

  10. Visseren FLJ, Mach F, Smulders YM et al (2021) 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42:3227–3337. https://doi.org/10.1093/eurheartj/ehab484

    Article  PubMed  Google Scholar 

  11. Arida A, Protogerou A, Kitas G, Sfikakis P (2018) Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci 19:1890. https://doi.org/10.3390/ijms19071890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridker PM, Rane M (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ Res 128:1728–1746. https://doi.org/10.1161/CIRCRESAHA.121.319077

    Article  CAS  PubMed  Google Scholar 

  13. Murdaca G, Colombo BM, Cagnati P et al (2012) Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 224:309–317. https://doi.org/10.1016/j.atherosclerosis.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  14. Poredos P, Poredos AV, Gregoric I (2021) Endothelial Dysfunction and Its Clinical Implications. Angiology 72:604–615. https://doi.org/10.1177/0003319720987752

    Article  CAS  PubMed  Google Scholar 

  15. Smolen JS, Landewé RBM, Bijlsma JWJ et al (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 79:685–699. https://doi.org/10.1136/annrheumdis-2019-216655

    Article  CAS  PubMed  Google Scholar 

  16. Xie F, Yun H, Levitan EB et al (2019) Tocilizumab and the Risk of Cardiovascular Disease: Direct Comparison Among Biologic Disease-Modifying Antirheumatic Drugs for Rheumatoid Arthritis Patients. Arthritis Care Res (Hoboken) 71:1004–1018. https://doi.org/10.1002/acr.23737

    Article  CAS  PubMed  Google Scholar 

  17. Singh S, Fumery M, Singh AG et al (2020) Comparative Risk of Cardiovascular Events With Biologic and Synthetic Disease-Modifying Antirheumatic Drugs in Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) 72:561–576. https://doi.org/10.1002/acr.23875

    Article  CAS  PubMed  Google Scholar 

  18. Naranjo A, Sokka T, Descalzo MA et al (2008) Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. Arthritis Res Ther 10:R30. https://doi.org/10.1186/ar2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  20. Hürlimann D, Forster A, Noll G et al (2002) Anti–Tumor Necrosis Factor-α Treatment Improves Endothelial Function in Patients With Rheumatoid Arthritis. Circulation 106:2184–2187. https://doi.org/10.1161/01.CIR.0000037521.71373.44

    Article  PubMed  Google Scholar 

  21. Hänsel S, Lässig G, Pistrosch F, Passauer J (2003) Endothelial dysfunction in young patients with long-term rheumatoid arthritis and low disease activity. Atherosclerosis 170:177–180. https://doi.org/10.1016/S0021-9150(03)00281-8

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A et al (2004) Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor α antibody. Arthritis Care Res (Hoboken) 51:447–450. https://doi.org/10.1002/art.20407

    Article  CAS  Google Scholar 

  23. Irace C, Mancuso G, Fiaschi E et al (2004) Effect of anti TNFalpha therapy on arterial diameter and wall shear stress and HDL cholesterol. Atherosclerosis 177:113–118. https://doi.org/10.1016/j.atherosclerosis.2004.04.031

    Article  CAS  PubMed  Google Scholar 

  24. van Doornum S, McColl G, Wicks IP (2005) Tumour necrosis factor antagonists improve disease activity but not arterial stiffness in rheumatoid arthritis. Rheumatology 44:1428–1432. https://doi.org/10.1093/rheumatology/kei033

    Article  PubMed  Google Scholar 

  25. Gonzalez-Gay MA, Garcia-Unzueta MT, de Matias JM et al (2006) Influence of anti-TNF-alpha infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis. Clin Exp Rheumatol 24:373–379

    CAS  PubMed  Google Scholar 

  26. Bilsborough W, Keen H, Taylor A et al (2006) Anti-tumour necrosis factor-alpha therapy over conventional therapy improves endothelial function in adults with rheumatoid arthritis. Rheumatol Int 26:1125–1131. https://doi.org/10.1007/s00296-006-0147-y

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Juanatey C, Llorca J, Sanchez-Andrade A et al (2006) Short-term adalimumab therapy improves endo-thelial function in patients with rheumatoid arthritis refractory to infliximab. Clin Exp Rheumatol 24:309–312

    CAS  PubMed  Google Scholar 

  28. Mäki-Petäjä KM, Hall FC, Booth AD et al (2006) Rheumatoid Arthritis Is Associated With Increased Aortic Pulse-Wave Velocity, Which Is Reduced by Anti–Tumor Necrosis Factor-α Therapy. Circulation 114:1185–1192. https://doi.org/10.1161/CIRCULATIONAHA.105.601641

    Article  CAS  PubMed  Google Scholar 

  29. Komai N, Morita Y, Sakuta T et al (2007) Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod Rheumatol 17:385–390. https://doi.org/10.1007/s10165-007-0605-8

    Article  CAS  PubMed  Google Scholar 

  30. Cypiene A, Laucevicius A, Venalis A et al (2007) Non-invasive assessment of arterial stiffness indices by applanation tonometry and pulse wave analysis in patients with rheumatoid arthritis treated with TNF-alpha blocker remicade (infliximab). Proc West Pharmacol Soc 50:119–122

    CAS  PubMed  Google Scholar 

  31. del Porto F, Lagana B, Lai S et al (2007) Response to anti-tumour necrosis factor alpha blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. Rheumatology 46:1111–1115. https://doi.org/10.1093/rheumatology/kem089

    Article  CAS  PubMed  Google Scholar 

  32. Bosello S, Santoliquido A, Zoli A et al (2008) TNF-alpha blockade induces a reversible but transient effect on endothelial dysfunction in patients with long-standing severe rheumatoid arthritis. Clin Rheumatol 27:833–839. https://doi.org/10.1007/s10067-007-0803-y

    Article  PubMed  Google Scholar 

  33. Wong M, Oakley SP, Young L et al (2009) Infliximab improves vascular stiffness in patients with rheumatoid arthritis. Ann Rheum Dis 68:1277–1284. https://doi.org/10.1136/ard.2007.086157

    Article  CAS  PubMed  Google Scholar 

  34. Sidiropoulos PI, Siakka P, Pagonidis K et al (2009) Sustained improvement of vascular endothelial function during anti-TNFα treatment in rheumatoid arthritis patients. Scand J Rheumatol 38:6–10. https://doi.org/10.1080/03009740802363768

    Article  CAS  PubMed  Google Scholar 

  35. Capria A, de Nardo D, Baffetti FR et al (2010) Long-Term Anti-TNF-α Treatments Reverse the Endothelial Dysfunction in Rheumatoid Arthritis: The Biological Coherence between Synovial and Endothelial Inflammation. Int J Immunopathol Pharmacol 23:255–262. https://doi.org/10.1177/039463201002300123

    Article  CAS  PubMed  Google Scholar 

  36. Galarraga B, Khan F, Kumar P et al (2009) Etanercept improves inflammation-associated arterial stiffness in rheumatoid arthritis. Rheumatology 48:1418–1423. https://doi.org/10.1093/rheumatology/kep251

    Article  CAS  PubMed  Google Scholar 

  37. Klimiuk P, Sierakowski S, Domyslawska I, Chwiecko J (2009) Effect of etanercept on serum levels of soluble cell adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 38:439–444. https://doi.org/10.3109/03009740903079321

    Article  CAS  PubMed  Google Scholar 

  38. Turiel M, Tomasoni L, Sitia S et al (2010) RESEARCH: Effects of Long-Term Disease-Modifying Antirheumatic Drugs on Endothelial Function in Patients with Early Rheumatoid Arthritis. Cardiovasc Ther 28:e53–e64. https://doi.org/10.1111/j.1755-5922.2009.00119.x

    Article  CAS  PubMed  Google Scholar 

  39. Tikiz H, Arslan O, Pirildar T et al (2010) The effect of anti-tumor necrosis factor (TNF)-alpha therapy with etanercept on endothelial functions in patients with rheumatoid arthritis. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology 10:98–103. https://doi.org/10.5152/akd.2010.031

    Article  PubMed  Google Scholar 

  40. Galarraga B, JJF B, Pullar T et al (2010) Clinical Improvement in Rheumatoid Arthritis Is Associated with Healthier Microvascular Function in Patients Who Respond to Antirheumatic Therapy. J Rheumatol 37:521–528. https://doi.org/10.3899/jrheum.090417

    Article  CAS  PubMed  Google Scholar 

  41. Ajeganova S, Fiskesund R, de Faire U et al (2011) Effect of biological therapy on levels of atheroprotective antibodies against phosphorylcholine and apolipoproteins in rheumatoid arthritis - a one year study. Clin Exp Rheumatol 29:942–950

    PubMed  Google Scholar 

  42. Kerekes G, Soltész P, Szucs G et al (2011) Effects of adalimumab treatment on vascular disease associated with early rheumatoid arthritis. Isr Med Assoc J 13:147–152

    PubMed  Google Scholar 

  43. Kume K, Amano K, Yamada S et al (2011) Tocilizumab Monotherapy Reduces Arterial Stiffness as Effectively as Etanercept or Adalimumab Monotherapy in Rheumatoid Arthritis: An Open-label Randomized Controlled Trial. J Rheumatol 38:2169–2171. https://doi.org/10.3899/jrheum.110340

    Article  CAS  PubMed  Google Scholar 

  44. Tam L-S, Shang Q, Li EK et al (2012) Infliximab is Associated with Improvement in Arterial Stiffness in Patients with Early Rheumatoid Arthritis — A Randomized Trial. J Rheumatol 39:2267–2275. https://doi.org/10.3899/jrheum.120541

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Miranda-Filloy JA et al (2012) Anti-TNF-Alpha-Adalimumab Therapy Is Associated with Persistent Improvement of Endothelial Function without Progression of Carotid Intima-Media Wall Thickness in Patients with Rheumatoid Arthritis Refractory to Conventional Therapy. Mediators Inflamm 2012:1–8. https://doi.org/10.1155/2012/674265

    Article  CAS  Google Scholar 

  46. Hjeltnes G, Hollan I, Førre O et al (2013) Serum levels of lipoprotein(a) and E-selectin are reduced in rheumatoid arthritis patients treated with methotrexate or methotrexate in combination with TNF-α-inhibitor. Clin Exp Rheumatol 31:415–421

    PubMed  Google Scholar 

  47. Daïen CI, Fesler P, du Cailar G et al (2013) Etanercept normalises left ventricular mass in patients with rheumatoid arthritis. Ann Rheum Dis 72:881–887. https://doi.org/10.1136/annrheumdis-2012-201489

    Article  CAS  PubMed  Google Scholar 

  48. Mäki-Petäjä KM, Elkhawad M, Cheriyan J et al (2012) Anti-Tumor Necrosis Factor-α Therapy Reduces Aortic Inflammation and Stiffness in Patients With Rheumatoid Arthritis. Circulation 126:2473–2480. https://doi.org/10.1161/CIRCULATIONAHA.112.120410

    Article  CAS  PubMed  Google Scholar 

  49. Spinelli FR, Metere A, Barbati C et al (2013) Effect of Therapeutic Inhibition of TNF on Circulating Endothelial Progenitor Cells in Patients with Rheumatoid Arthritis. Mediators Inflamm 2013:1–8. https://doi.org/10.1155/2013/537539

    Article  CAS  Google Scholar 

  50. Spinelli FR, di Franco M, Metere A et al (2014) Decrease of Asymmetric Dimethyl Arginine After Anti-TNF Therapy in Patients with Rheumatoid Arthritis. Drug Dev Res 75:S67–S69. https://doi.org/10.1002/ddr.21200

    Article  CAS  PubMed  Google Scholar 

  51. Vassilopoulos D, Gravos A, Vlachopoulos C et al (2015) Adalimumab decreases aortic stiffness independently of its effect in disease activity in patients with rheumatoid arthritis. Clin Rheumatol 34:359–364. https://doi.org/10.1007/s10067-014-2718-8

    Article  PubMed  Google Scholar 

  52. Rongen GA, van Ingen I, Kok M et al (2018) Vasodilator function worsens after cessation of tumour necrosis factor inhibitor therapy in patients with rheumatoid arthritis only if a flare occurs. Clin Rheumatol 37:909–916. https://doi.org/10.1007/s10067-017-3961-6

    Article  PubMed  Google Scholar 

  53. Vlachopoulos C, Gravos A, Georgiopoulos G et al (2018) The effect of TNF-a antagonists on aortic stiffness and wave reflections: a meta-analysis. Clin Rheumatol 37:515–526. https://doi.org/10.1007/s10067-017-3657-y

    Article  CAS  PubMed  Google Scholar 

  54. Dávida L, Pongrácz V, Mohamed EA et al (2020) A prospective, longitudinal monocentric study on laser Doppler imaging of microcirculation: comparison with macrovascular pathophysiology and effect of adalimumab treatment in early rheumatoid arthritis. Rheumatol Int 40:415–424. https://doi.org/10.1007/s00296-019-04503-5

    Article  CAS  PubMed  Google Scholar 

  55. Plein S, Erhayiem B, Fent G et al (2020) Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naïve, early rheumatoid arthritis. Ann Rheum Dis 79:1414–1422. https://doi.org/10.1136/annrheumdis-2020-217653

    Article  CAS  PubMed  Google Scholar 

  56. Blanken AB, Agca R, van Sijl AM et al (2021) Arterial wall inflammation in rheumatoid arthritis is reduced by anti-inflammatory treatment. Semin Arthritis Rheum 51:457–463. https://doi.org/10.1016/j.semarthrit.2021.03.008

    Article  CAS  PubMed  Google Scholar 

  57. Anghel D, Sîrbu C, Hoinoiu E-M et al (2021) Influence of anti-TNF therapy and homocysteine level on carotid intima-media thickness in rheumatoid arthritis patients. Exp Ther Med 23:59. https://doi.org/10.3892/etm.2021.10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blanken AB, Raadsen R, Agca R et al (2022) Effect of anti-inflammatory therapy on vascular biomarkers for subclinical cardiovascular disease in rheumatoid arthritis patients. Rheumatol Int 43(2):315–322. https://doi.org/10.1007/s00296-022-05226-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Szeremeta A, Jura-Półtorak A, Zoń-Giebel A et al (2022) TNF-α Inhibitors in Combination with MTX Reduce Circulating Levels of Heparan Sulfate/Heparin and Endothelial Dysfunction Biomarkers (sVCAM-1, MCP-1, MMP-9 and ADMA) in Women with Rheumatoid Arthritis. J Clin Med 11:4213. https://doi.org/10.3390/jcm11144213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mathieu S, Pereira B, Dubost J-J et al (2012) No significant change in arterial stiffness in RA after 6 months and 1 year of rituximab treatment. Rheumatology 51:1107–1111. https://doi.org/10.1093/rheumatology/kes006

    Article  CAS  PubMed  Google Scholar 

  61. Provan SA, Berg IJ, Hammer HB et al (2015) The Impact of Newer Biological Disease Modifying Anti-Rheumatic Drugs on Cardiovascular Risk Factors: A 12-Month Longitudinal Study in Rheumatoid Arthritis Patients Treated with Rituximab. Abatacept and Tociliziumab. PLoS One 10:e0130709. https://doi.org/10.1371/journal.pone.0130709

    Article  CAS  PubMed  Google Scholar 

  62. Benucci M, Saviola M et al (2013) Factors correlated with improvement of endothelial dysfunction during rituximab therapy in patients with rheumatoid arthritis. Biologics 69. https://doi.org/10.2147/BTT.S39182

  63. Ikonomidis I, Lekakis JP, Nikolaou M et al (2008) Inhibition of Interleukin-1 by Anakinra Improves Vascular and Left Ventricular Function in Patients With Rheumatoid Arthritis. Circulation 117:2662–2669. https://doi.org/10.1161/CIRCULATIONAHA.107.731877

    Article  CAS  PubMed  Google Scholar 

  64. Ikonomidis I, Tzortzis S, Lekakis J et al (2009) Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart 95:1502–1507. https://doi.org/10.1136/hrt.2009.168971

    Article  CAS  PubMed  Google Scholar 

  65. Ikonomidis I, Tzortzis S, Andreadou I et al (2014) Increased Benefit of Interleukin-1 Inhibition on Vascular Function, Myocardial Deformation, and Twisting in Patients With Coronary Artery Disease and Coexisting Rheumatoid Arthritis. Circ Cardiovasc Imaging 7:619–628. https://doi.org/10.1161/CIRCIMAGING.113.001193

    Article  PubMed  Google Scholar 

  66. Gonzalez-Juanatey C, Llorca J, Vazquez-Rodriguez TR et al (2008) Short-term improvement of endothelial function in rituximab-treated rheumatoid arthritis patients refractory to tumor necrosis factor α blocker therapy. Arthritis Rheum 59:1821–1824. https://doi.org/10.1002/art.24308

    Article  CAS  PubMed  Google Scholar 

  67. Kerekes G, Soltész P, Dér H et al (2009) Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol 28:705–710. https://doi.org/10.1007/s10067-009-1095-1

    Article  PubMed  Google Scholar 

  68. Hsue PY, Scherzer R, Grunfeld C et al (2014) Depletion of B-Cells With Rituximab Improves Endothelial Function and Reduces Inflammation Among Individuals With Rheumatoid Arthritis. J Am Heart Assoc 3. https://doi.org/10.1161/JAHA.114.001267

  69. Protogerou AD, Zampeli E, Fragiadaki K et al (2011) A pilot study of endothelial dysfunction and aortic stiffness after interleukin-6 receptor inhibition in rheumatoid arthritis. Atherosclerosis 219:734–736. https://doi.org/10.1016/j.atherosclerosis.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  70. McInnes IB, Thompson L, Giles JT et al (2015) Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis 74:694–702. https://doi.org/10.1136/annrheumdis-2013-204345

    Article  CAS  PubMed  Google Scholar 

  71. Bacchiega BC, Bacchiega AB, Usnayo MJG et al (2017) Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.116.005038

  72. Ikonomidis I, Pavlidis G, Katsimbri P et al (2019) Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin Res Cardiol 108:1093–1101. https://doi.org/10.1007/s00392-019-01443-9

    Article  CAS  PubMed  Google Scholar 

  73. Ikonomidis I, Pavlidis G, Katsimbri P et al (2020) Tocilizumab improves oxidative stress and endothelial glycocalyx: A mechanism that may explain the effects of biological treatment on COVID-19. Food Chem Toxicol 145:111694. https://doi.org/10.1016/j.fct.2020.111694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kume K, Amano K, Yamada S et al (2017) Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study. Rheumatol Int 37:2079–2085. https://doi.org/10.1007/s00296-017-3844-9

    Article  CAS  PubMed  Google Scholar 

  75. Soós B, Hamar A, Pusztai A et al (2022) Effects of tofacitinib therapy on arginine and methionine metabolites in association with vascular pathophysiology in rheumatoid arthritis: A metabolomic approach. Front Med (Lausanne) 9. https://doi.org/10.3389/fmed.2022.1011734

  76. Czókolyová M, Hamar A, Pusztai A et al (2022) Effects of One-Year Tofacitinib Therapy on Lipids and Adipokines in Association with Vascular Pathophysiology in Rheumatoid Arthritis. Biomolecules 12:1483. https://doi.org/10.3390/biom12101483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuri Gasparyan A, Stavropoulos-Kalinoglou AP, Mikhailidis D et al (2010) The Rationale for Comparative Studies of Accelerated Atherosclerosis in Rheumatic Diseases. Curr Vasc Pharmacol 8:437–449. https://doi.org/10.2174/157016110791330852

    Article  Google Scholar 

  78. Bots ML, Dijk JM, Oren A, Grobbee DE (2002) Carotid intima–media thickness, arterial stiffness and risk of cardiovascular disease. J Hypertens 20:2317–2325. https://doi.org/10.1097/00004872-200212000-00002

    Article  CAS  PubMed  Google Scholar 

  79. Bordy R, Totoson P, Prati C et al (2018) Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 14:404–420. https://doi.org/10.1038/s41584-018-0022-8

    Article  CAS  PubMed  Google Scholar 

  80. Prati C, Demougeot C, Guillot X et al (2014) Endothelial dysfunction in joint disease. Joint Bone Spine 81:386–391. https://doi.org/10.1016/j.jbspin.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  81. Wilkinson IB, Webb DJ (2001) Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J Clin Pharmacol 52:631–646. https://doi.org/10.1046/j.0306-5251.2001.01495.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Puissant C, Abraham P, Durand S et al (2013) Reproducibility of Non-Invasive Assessment of Skin Endothelial Function Using Laser Doppler Flowmetry and Laser Speckle Contrast Imaging. PLoS One 8:e61320. https://doi.org/10.1371/journal.pone.0061320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cerny V, Astapenko D, Burkovskiy I et al (2017) Glycocalyx in vivo measurement. Clin Hemorheol Microcirc 67:499–503. https://doi.org/10.3233/CH-179235

    Article  PubMed  Google Scholar 

  84. van Bortel LM, Laurent S, Boutouyrie P et al (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30:445–448. https://doi.org/10.1097/HJH.0b013e32834fa8b0

    Article  CAS  PubMed  Google Scholar 

  85. Stone K, Fryer S, Faulkner J et al (2021) Acute Changes in Carotid-Femoral Pulse-Wave Velocity Are Tracked by Heart-Femoral Pulse-Wave Velocity. Front Cardiovasc Med 7. https://doi.org/10.3389/fcvm.2020.592834

  86. Sang T, Lv N, Dang A et al (2021) Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Hypertension Research 44:1175–1185. https://doi.org/10.1038/s41440-021-00678-2

    Article  PubMed  Google Scholar 

  87. Saiki A, Ohira M, Yamaguchi T et al (2020) New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb 27:732–748. https://doi.org/10.5551/jat.RV17043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19:75. https://doi.org/10.1186/s12968-017-0389-8

    Article  PubMed  PubMed Central  Google Scholar 

  89. Swoboda PP, Erhayiem B, Kan R et al (2018) Cardiovascular magnetic resonance measures of aortic stiffness in asymptomatic patients with type 2 diabetes: association with glycaemic control and clinical outcomes. Cardiovasc Diabetol 17:35. https://doi.org/10.1186/s12933-018-0681-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maroules CD, Khera A, Ayers C et al (2014) Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson 16:33. https://doi.org/10.1186/1532-429X-16-33

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bots ML, Hofman A, Grobbee DE (1997) Increased Common Carotid Intima-Media Thickness. Stroke 28:2442–2447. https://doi.org/10.1161/01.STR.28.12.2442

    Article  CAS  PubMed  Google Scholar 

  92. Corrales A, González-Juanatey C, Peiró ME et al (2014) Carotid ultrasound is useful for the cardiovascular risk stratification of patients with rheumatoid arthritis: results of a population-based study. Ann Rheum Dis 73:722–727. https://doi.org/10.1136/annrheumdis-2012-203101

    Article  PubMed  Google Scholar 

  93. Figueroa AL, Abdelbaky A, Truong QA et al (2013) Measurement of Arterial Activity on Routine FDG PET/CT Images Improves Prediction of Risk of Future CV Events. JACC Cardiovasc Imaging 6:1250–1259. https://doi.org/10.1016/j.jcmg.2013.08.006

    Article  PubMed  Google Scholar 

  94. Rose S, Sheth NH, Baker JF et al (2013) A comparison of vascular inflammation in psoriasis, rheumatoid arthritis, and healthy subjects by FDG-PET/CT: a pilot study. Am J Cardiovasc Dis 3:273–278

    PubMed  PubMed Central  Google Scholar 

  95. Geraldino-Pardilla L, Zartoshti A, Bag Ozbek A et al (2018) Arterial Inflammation Detected With 18 F-Fluorodeoxyglucose–Positron Emission Tomography in Rheumatoid Arthritis. Arthritis & Rheumatol 70:30–39. https://doi.org/10.1002/art.40345

    Article  CAS  Google Scholar 

  96. Dowsett L, Higgins E, Alanazi S et al (2020) ADMA: A Key Player in the Relationship between Vascular Dysfunction and Inflammation in Atherosclerosis. J Clin Med 9:3026. https://doi.org/10.3390/jcm9093026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blann A (2003) The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J 24:2166–2179. https://doi.org/10.1016/j.ehj.2003.08.021

    Article  CAS  PubMed  Google Scholar 

  98. Littler AJ, Buckley CD, Wordsworth P et al (1997) A distinct profile of six soluble adhesion molecules (ICAM-1, ICAM-3, VCAM-1, E-selectin, L-selectin and P-selectin) in rheumatoid arthritis. Rheumatology 36:164–169. https://doi.org/10.1093/rheumatology/36.2.164

    Article  CAS  Google Scholar 

  99. Carter RA, Wicks IP (2001) Vascular cell adhesion molecule 1 (CD106): A multifaceted regulator of joint inflammation. Arthritis Rheum 44:985–994. https://doi.org/10.1002/1529-0131(200105)44:5<985::AID-ANR176>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  100. Park M, Kulkarni A, Beatty A et al (2015) Soluble endothelial cell selective adhesion molecule and cardiovascular outcomes in patients with stable coronary disease: A report from the Heart and Soul Study. Atherosclerosis 243:546–552. https://doi.org/10.1016/j.atherosclerosis.2015.10.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yuri Gasparyan A, Ayvazyan L, Cocco G, Kitas DG (2012) Adverse Cardiovascular Effects of Antirheumatic Drugs: Implications for Clinical Practice and Research. Curr Pharm Des 18:1543–1555. https://doi.org/10.2174/138161212799504759

    Article  Google Scholar 

Download references

Disclosure

The authors confirm that they have no conflicts of interest related to this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript have made significant contributions to the conception and design of the study, the acquisition and analysis of data, and the interpretation of results. They have all participated in the drafting and critical revision of the manuscript, and have given their final approval for submission to this journal. Additionally, all authors agree to be responsible for all aspects of the work and are willing to be held accountable for any issues that may arise. Finally, all contributing authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Tsvetoslav Georgiev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of the Topical Collection entitled ‘Cardiovascular Issues in Rheumatic Diseases’

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerganov, G., Georgiev, T., Dimova, M. et al. Vascular effects of biologic and targeted synthetic antirheumatic drugs approved for rheumatoid arthritis: a systematic review. Clin Rheumatol 42, 2651–2676 (2023). https://doi.org/10.1007/s10067-023-06587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06587-8

Keywords

Navigation