Skip to main content
Log in

Exploring the modification factors of exercise therapy on biomechanical load in patients with knee osteoarthritis: a systematic review and meta-analysis

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The objective of this systematic review and meta-analysis is to clarify the effect of exercise therapy on the first peak knee adduction moment (KAM), as well as other biomechanical loads in patients with knee osteoarthritis (OA), and identify physical characteristics that influence differences in biomechanical load after exercise therapy. The data sources are PubMed, PEDro, and CINAHL, from study inception to May 2021. The eligibility criteria include studies evaluating the first peak (KAM), peak knee flexion moment (KFM), maximal knee joint compression force (KCF), or co-contraction during walking before and after exercise therapy in patients with knee OA. The risk of bias was independently assessed by two reviewers using PEDro and NIH scales. Among 11 RCTs and nine non-RCTs, 1119 patients with knee OA were included (average age: 63.7 years). As the results of meta-analysis, exercise therapy tended to increase the first peak KAM (SMD 0.11; 95% CI: −0.03–0.24), peak KFM (SMD 0.13; 95% CI: −0.03–0.29), and maximal KCF (SMD 0.09; 95% CI −0.05–0.22). An increased first peak KAM was significantly associated with a larger improvement in knee muscle strength and WOMAC pain. However, the quality of evidence regarding the biomechanical loads was low-to-moderate according to the GRADE approach. The improvement in pain and knee muscle strength may mediate the increase in first peak KAM, suggesting difficulty in balancing symptom relief and biomechanical load reduction. Therefore, exercise therapy may satisfy both aspects simultaneously when combined with biomechanical interventions, such as a valgus knee brace or insoles. Registration: PROSPERO (CRD42021230966)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. McAlindon TE, Bannuru RR, Sullivan MC et al (2014) OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil 22:363–388. https://doi.org/10.1016/j.joca.2014.01.003

    Article  CAS  Google Scholar 

  2. Cho HJ, Chang CB, Yoo JH et al (2010) Gender differences in the correlation between symptom and radiographic severity in patients with knee osteoarthritis. Clin Orthop Relat Res 468:1749–1758. https://doi.org/10.1007/s11999-010-1282-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ribeiro IC, Coimbra AMV, Costallat BL, Coimbra IB (2020) Relationship between radiological severity and physical and mental health in elderly individuals with knee osteoarthritis. Arthritis Res Ther 22:187. https://doi.org/10.1186/s13075-020-02280-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miyazaki T, Wada M, Kawahara H et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622. https://doi.org/10.1136/ard.61.7.617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP (2014) Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr Cartil 22:1833–1839. https://doi.org/10.1016/j.joca.2014.08.009

    Article  CAS  Google Scholar 

  6. Erhart-Hledik JC, Favre J, Andriacchi TP (2015) New insight in the relationship between regional patterns of knee cartilage thickness, osteoarthritis disease severity, and gait mechanics. J Biomech 48:3868–3875. https://doi.org/10.1016/j.jbiomech.2015.09.033

    Article  PubMed  Google Scholar 

  7. Thorstensson CA, Henriksson M, von Porat A et al (2007) The effect of eight weeks of exercise on knee adduction moment in early knee osteoarthritis – a pilot study. Osteoarthr Cartil 15:1163–1170. https://doi.org/10.1016/j.joca.2007.03.012

    Article  CAS  Google Scholar 

  8. Ferreira GE, Robinson CC, Wiebusch M et al (2015) The effect of exercise therapy on knee adduction moment in individuals with knee osteoarthritis: a systematic review. Clin Biomech 30:521–527

    Article  Google Scholar 

  9. Li S, Ng WH, Abujaber S, Shaharudin S (2021) Effects of resistance training on gait velocity and knee adduction moment in knee osteoarthritis patients: a systematic review and meta-analysis. Sci Rep 11:16104. https://doi.org/10.1038/s41598-021-95426-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holsgaard-Larsen A, Clausen B, Søndergaard J et al (2017) The effect of instruction in analgesic use compared with neuromuscular exercise on knee-joint load in patients with knee osteoarthritis: a randomized, single-blind, controlled trial. Osteoarthr Cartil 25:470–480. https://doi.org/10.1016/j.joca.2016.10.022

    Article  CAS  Google Scholar 

  11. Kraemer HC, Wilson GT, Fairburn CG, Agras WS (2002) Mediators and moderators of treatment effects in randomized clinical trials. Arch Gen Psychiatry 59:877–883. https://doi.org/10.1001/archpsyc.59.10.877

    Article  PubMed  Google Scholar 

  12. Hill JC, Fritz JM (2011) Psychosocial influences on low back pain, disability, and response to treatment. Phys Ther 91:712–721. https://doi.org/10.2522/ptj.20100280

    Article  PubMed  Google Scholar 

  13. Quicke JG, Runhaar J, van der Windt DA et al (2020) Moderators of the effects of therapeutic exercise for people with knee and hip osteoarthritis: a systematic review of sub-group analyses from randomised controlled trials. Osteoarthritis and Cartilage Open 2:100113. https://doi.org/10.1016/j.ocarto.2020.100113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ardern CL, Büttner F, Andrade R et al (2022) Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br J Sports Med 56:175–195. https://doi.org/10.1136/bjsports-2021-103987

    Article  PubMed  Google Scholar 

  16. Manal K, Gardinier E, Buchanan TS, Snyder-Mackler L (2015) A more informed evaluation of medial compartment loading: the combined use of the knee adduction and flexor moments. Osteoarthr Cartil 23:1107–1111. https://doi.org/10.1016/j.joca.2015.02.779

    Article  CAS  Google Scholar 

  17. Hodges PW, van den Hoorn W, Wrigley TV et al (2016) Increased duration of co-contraction of medial knee muscles is associated with greater progression of knee osteoarthritis. Man Ther 21:151–158. https://doi.org/10.1016/j.math.2015.07.004

    Article  PubMed  Google Scholar 

  18. Lloyd DG, Buchanan TS (2001) Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech 34(10):1257–1267

    Article  CAS  PubMed  Google Scholar 

  19. Chang A, Hayes K, Dunlop D et al (2005) Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Arthritis Rheum 52:3515–3519. https://doi.org/10.1002/art.21406

    Article  PubMed  Google Scholar 

  20. Harato K, Nagura T, Matsumoto H et al (2008) Knee flexion contracture will lead to mechanical overload in both limbs: a simulation study using gait analysis. Knee 15:467–472. https://doi.org/10.1016/j.knee.2008.07.003

    Article  PubMed  Google Scholar 

  21. Telfer S, Lange MJ, Sudduth ASM (2017) Factors influencing knee adduction moment measurement: a systematic review and meta-regression analysis. Gait Posture 58:333–339. https://doi.org/10.1016/j.gaitpost.2017.08.025

    Article  PubMed  Google Scholar 

  22. de Morton NA (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55:129–133. https://doi.org/10.1016/s0004-9514(09)70043-1

    Article  PubMed  Google Scholar 

  23. The National Heart, Lung, and Blood Institute (2013) Quality assessment tool for before-after (pre-post) studies with no control group. Study Quality Assess Tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 17 Dec 2021

  24. PEDro (2019) Summary of measurement properties of the PEDro scale - PEDro. https://pedro.org.au/english/summary-of-measurement-properties-of-the-pedro-scale/. Accessed 21 Dec 2021

  25. Bokaeian HR, Esfandiarpour F, Zahednejad S et al (2021) Effects of an exercise therapy targeting knee kinetics on pain, function, and gait kinetics in patients with knee osteoarthritis: a randomized clinical trial. Adapt Phys Activ Q 38:377–395. https://doi.org/10.1123/apaq.2020-0144

    Article  PubMed  Google Scholar 

  26. Uthman OA, van der Windt DA, Jordan JL et al (2013) Exercise for lower limb osteoarthritis: systematic review incorporating trial sequential analysis and network meta-analysis. BMJ 347:f5555–f5555. https://doi.org/10.1136/bmj.f5555

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bennell KL, Hunt MA, Wrigley TV et al (2010) Hip strengthening reduces symptoms but not knee load in people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial. Osteoarthr Cartil 18:621–628. https://doi.org/10.1016/j.joca.2010.01.010

    Article  CAS  Google Scholar 

  28. Chang S-Y, Lin Y-J, Hsu W-C et al (2016) Exercise alters gait pattern but not knee load in patients with knee osteoarthritis. Biomed Res Int 2016:1–12. https://doi.org/10.1155/2016/7468937

    Article  Google Scholar 

  29. DeVita P, Aaboe J, Bartholdy C et al (2018) Quadriceps-strengthening exercise and quadriceps and knee biomechanics during walking in knee osteoarthritis: a two-centre randomized controlled trial. Clin Biomech 59:199–206. https://doi.org/10.1016/j.clinbiomech.2018.09.016

    Article  Google Scholar 

  30. Hunt MA, Pollock CL, Kraus VB et al (2013) Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: results from a randomized controlled pilot study. BMC Musculoskelet Disord 14:115. https://doi.org/10.1186/1471-2474-14-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pietrosimone BG, Saliba SA, Hart JM et al (2010) Effects of disinhibitory transcutaneous electrical nerve stimulation and therapeutic exercise on sagittal plane peak knee kinematics and kinetics in people with knee osteoarthritis during gait: a randomized controlled trial. Clin Rehabil 24:1091–1101. https://doi.org/10.1177/0269215510375903

    Article  PubMed  Google Scholar 

  32. Thorp LE, Wimmer MA, Foucher KC et al (2010) The biomechanical effects of focused muscle training on medial knee loads in OA of the knee: a pilot, proof of concept study. J Musculoskelet Neuronal Interact 10:166–173

    CAS  PubMed  Google Scholar 

  33. Messier SP, Mihalko SL, Legault C et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310:1263–1273. https://doi.org/10.1001/jama.2013.277669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deeks J, Higgins J (2010) Statistical algorithms in Review Manager 5. https://training.cochrane.org/handbook/current/statistical-methods-revman5. Accessed 13 Feb 2023

  35. Cohen J (1992) A power primer. Psychological bulletin 112:155–159. https://doi.org/10.1038/141613a0

    Article  CAS  PubMed  Google Scholar 

  36. Lim B-W, Hinman RS, Wrigley TV et al (2008) Does knee malalignment mediate the effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee osteoarthritis? A randomized controlled trial. Arthritis Rheum 59:943–951. https://doi.org/10.1002/art.23823

    Article  PubMed  Google Scholar 

  37. Henriksen M, Klokker L, Bartholdy C et al (2016) No effects of functional exercise therapy on walking biomechanics in patients with knee osteoarthritis: exploratory outcome analyses from a randomised trial. BMJ Open Sport Exerc Med 2:e000230. https://doi.org/10.1136/bmjsem-2017-000230

    Article  Google Scholar 

  38. Balshem H, Helfand M, Schünemann HJ et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406. https://doi.org/10.1016/j.jclinepi.2010.07.015

    Article  PubMed  Google Scholar 

  39. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses Testing for heterogeneity. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  40. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foroughi N, Smith RM, Lange AK et al (2011a) Progressive resistance training and dynamic alignment in osteoarthritis: a single-blind randomised controlled trial. Clin Biomech 26:71–77. https://doi.org/10.1016/j.clinbiomech.2010.08.013

    Article  Google Scholar 

  42. Foroughi N, Smith RM, Lange AK et al (2011b) Lower limb muscle strengthening does not change frontal plane moments in women with knee osteoarthritis: a randomized controlled trial. Clin Biomech 26:167–174. https://doi.org/10.1016/j.clinbiomech.2010.08.011

    Article  Google Scholar 

  43. Bennell KL, Kyriakides M, Metcalf B et al (2014) Neuromuscular versus quadriceps strengthening exercise in patients with medial knee osteoarthritis and varus malalignment: a randomized controlled trial. Arthritis rheumatol 66:950–959. https://doi.org/10.1002/art.38317

    Article  PubMed  Google Scholar 

  44. Messier SP, Mihalko SL, Beavers DP et al (2021) Effect of high-intensity strength training on knee pain and knee joint compressive forces among adults with knee osteoarthritis: the START randomized clinical trial. JAMA 325:646–657. https://doi.org/10.1001/jama.2021.0411

    Article  PubMed  PubMed Central  Google Scholar 

  45. Al-Khlaifat L, Herrington LC, Hammond A et al (2016) The effectiveness of an exercise programme on knee loading, muscle co-contraction, and pain in patients with medial knee osteoarthritis: a pilot study. Knee 23:63–69. https://doi.org/10.1016/j.knee.2015.03.014

    Article  PubMed  Google Scholar 

  46. Brenneman EC, Kuntz AB, Wiebenga EG, Maly MR (2015) A yoga strengthening program designed to minimize the knee adduction moment for women with knee osteoarthritis: a proof-of-principle cohort study. PLoS One 10:e0136854. https://doi.org/10.1371/journal.pone.0136854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis HC, Luc-Harkey BA, Seeley MK et al (2019) Sagittal plane walking biomechanics in individuals with knee osteoarthritis after quadriceps strengthening. Osteoarthr Cartil 27:771–780. https://doi.org/10.1016/j.joca.2018.12.026

    Article  CAS  Google Scholar 

  48. Gaudreault N, Mezghani N, Turcot K et al (2011) Effects of physiotherapy treatment on knee osteoarthritis gait data using principal component analysis. Clin Biomech 26:284–291. https://doi.org/10.1016/j.clinbiomech.2010.10.004

    Article  Google Scholar 

  49. King LK, Birmingham TB, Kean CO et al (2008) Resistance training for medial compartment knee osteoarthritis and malalignment. Med Sci Sports Exerc 40:1376–1384. https://doi.org/10.1249/MSS.0b013e31816f1c4a

    Article  PubMed  Google Scholar 

  50. Sled EA, Khoja L, Deluzio KJ et al (2010) Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: a clinical trial. Phys Ther 90:895–904. https://doi.org/10.2522/ptj.20090294

    Article  PubMed  Google Scholar 

  51. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baysal O, Baysal T, Alkan A et al (2004) Comparison of MRI graded cartilage and MRI based volume measurement in knee osteoarthritis. Swiss Med Wkly 134:283–288. https://doi.org/10.4414/smw.2004.10546

    Article  PubMed  Google Scholar 

  53. Mills EJ, Thorlund K, Ioannidis JPA (2013) Demystifying trial networks and network meta-analysis. BMJ 346:f2914. https://doi.org/10.1136/bmj.f2914

    Article  PubMed  Google Scholar 

  54. Salanti G, Ades AE, Ioannidis JPA (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171. https://doi.org/10.1016/j.jclinepi.2010.03.016

    Article  PubMed  Google Scholar 

  55. Fukuchi CA, Fukuchi RK, Duarte M (2019) Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev 8:153. https://doi.org/10.1186/s13643-019-1063-z

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang ACW, Tang SFT, Hong WH, Chen HC (2015) Kinetics features changes before and after intra-articular hyaluronic acid injections in patients with knee osteoarthritis. Clin Neurol Neurosurg 129:S21–S26. https://doi.org/10.1016/S0303-8467(15)30007-X

    Article  PubMed  Google Scholar 

  57. Schnitzer TJ, Popovich JM, Andersson GB, Andriacchi TP (1993) Effect of piroxicam on gait in patients with osteoarthritis of the knee. Arthritis Rheum 36:1207–1213. https://doi.org/10.1002/art.1780360905

    Article  CAS  PubMed  Google Scholar 

  58. Henriksen M, Graven-Nielsen T, Aaboe J et al (2010) Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain. Arthritis Care Res 62:501–509. https://doi.org/10.1002/acr.20033

    Article  Google Scholar 

  59. Henriksen M, Simonsen EB, Alkjaer T et al (2006) Increased joint loads during walking--a consequence of pain relief in knee osteoarthritis. Knee 13:445–450. https://doi.org/10.1016/j.knee.2006.08.005

    Article  PubMed  Google Scholar 

  60. Campbell TM, McGonagle D (2021) Flexion contracture is a risk factor for knee osteoarthritis incidence, progression and earlier arthroplasty: data from the Osteoarthritis Initiative. Ann Phys Rehabil Med 64:101439. https://doi.org/10.1016/j.rehab.2020.09.005

    Article  PubMed  Google Scholar 

  61. Fransen M, McConnell S, Harmer AR et al (2015) Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev 1:CD004376. https://doi.org/10.1002/14651858.CD004376.pub3

    Article  PubMed  Google Scholar 

  62. Hall M, Hinman RS, van der Esch M et al (2017) Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status? Arthritis Res Ther 19:271. https://doi.org/10.1186/s13075-017-1477-8

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moyer RF, Birmingham TB, Bryant DM et al (2015) Biomechanical effects of valgus knee bracing: a systematic review and meta-analysis. Osteoarthr Cartil 23:178–188. https://doi.org/10.1016/j.joca.2014.11.018

    Article  CAS  Google Scholar 

  64. Shaw KE, Charlton JM, Perry CKL et al (2018) The effects of shoe-worn insoles on gait biomechanics in people with knee osteoarthritis: a systematic review and meta-analysis. Br J Sports Med 52:238–253. https://doi.org/10.1136/bjsports-2016-097108

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by a Grant-in-Aid for JSPS Research Fellows (grant number: 19J23020).

Author information

Authors and Affiliations

Authors

Contributions

Moeka Yokoyama, Hirotaka Iijima, and Naohiko Kanemura contributed to the study’s conception and design. The acquisition of data was performed by Moeka Yokoyama and Hirotaka Iijima, and Keisuke Kubota. The analysis of data was performed by Moeka Yokoyama. All authors contributed to the interpretation of data. The first draft of the manuscript was written by Moeka Yokoyama, and all authors commented on the manuscript including the first submission and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Naohiko Kanemura.

Ethics declarations

Consent to participate

No patients were involved in the design, conduct, interpretation, or translation of the research.

Disclosures

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 4.55 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, M., Iijima, H., Kubota, K. et al. Exploring the modification factors of exercise therapy on biomechanical load in patients with knee osteoarthritis: a systematic review and meta-analysis. Clin Rheumatol 42, 1737–1752 (2023). https://doi.org/10.1007/s10067-023-06553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06553-4

Keywords

Navigation