Skip to main content

Advertisement

Log in

Enteric Toll-like receptor 7 stimulation causes acute exacerbation in lupus-susceptible mice

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Autoimmune diseases are often accompanied by acute exacerbation. However, the mechanism underlying systemic lupus erythematosus (SLE) flares remains unclear. We investigated whether short-term enteric Toll-like receptor 7 (TLR7) stimulation can exacerbate SLE using B6SKG mice, which spontaneously develop SLE due to a mutation in the zeta‒chain‒associated protein kinase 70 (Zap70) gene. Imiquimod (IMQ) or phosphate-buffered saline (PBS) were orally administered on B6WT and B6SKG mice every other day for 2 weeks. SLE exacerbation was assessed via fluorescent immunohistochemical staining of glomeruli for IgG and C3, hematoxylin and eosin staining of kidneys, and enzyme-linked immunosorbent assay for antinuclear antibody (ANA). Flow cytometry was used to evaluate germinal center B cells (GCBs), plasma cells, follicular helper T cells (Tfhs), regulatory T cells (Tregs), effector T cells (Th1s and Th17s), plasmacytoid dendritic cells (pDCs), conventional dendritic cells (cDCs), and macrophages (Mφs) in spleens. Oral administration of IMQ every other day for 2 weeks resulted in exacerbation of splenomegaly, increased IgG and C3 deposition in glomeruli, and increased ANA production in the B6SKG IMQ (SKG-IMQ) group compared to the B6SKG PBS (SKG-PBS) group; the percentages of GCBs, plasma cells, Tfhs, Th1s, pDCs, and Mφs were also increased in the SKG-IMQ group. Splenomegaly, IgG, and C3 deposition in glomeruli, and the percentages of GCBs, plasma cells, Tfhs, and Th1s were enhanced in SKG-IMQ mice compared with B6SKG mice topically treated with IMQ (SKG-ear-IMQ). Oral TLR7 stimulation in a Zap70 genetic mutation background can cause acute exacerbations of SLE.

Key Points

• The mechanism of SLE flares is not well understood.

• We have created a model that causes short-term SLE exacerbations in mice with a genetic background.

• IMQ administered orally causes more SLE in mice than transdermally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Tsokos GC (2020) Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 21:605–614. https://doi.org/10.1038/s41590-020-0677-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT (2021) Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis 80:14–25. https://doi.org/10.1136/annrheumdis-2020-218272

    Article  PubMed  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  4. Christensen SR, Shlomchik MJ (2007) Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin Immunol 19:11–23. https://doi.org/10.1016/j.smim.2006.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27:801–810. https://doi.org/10.1016/j.immuni.2007.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Fujimoto C, Kataoka S, Terada Y, Sano S (2014) Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus. Arthritis Rheumatol 66:694–706. https://doi.org/10.1002/art.38298

    Article  CAS  PubMed  Google Scholar 

  7. Schell SL, Bricker KN, Fike AJ et al (2021) Context-dependent miR-21 regulation of TLR7-mediated autoimmune and foreign antigen-driven antibody-forming cell and germinal center responses. J Immunol 206:2803–2818. https://doi.org/10.4049/jimmunol.2001039

    Article  CAS  PubMed  Google Scholar 

  8. Matsuo T, Hashimoto M, Sakaguchi S et al (2019) Strain-specific manifestation of lupus-like systemic autoimmunity caused by Zap70 mutation. J Immunol 202:3161–3172. https://doi.org/10.4049/jimmunol.1801159

    Article  CAS  PubMed  Google Scholar 

  9. Shirakashi M, Maruya M, Hirota K et al (2021) Effect of impaired T cell receptor signaling on the gut microbiota in a mouse model of systemic autoimmunity. Arthritis Rheumatol 74:641–653. https://doi.org/10.1002/art.42016

    Article  CAS  Google Scholar 

  10. Grine L, Steeland S, Van Ryckeghem S, Ballegeer M, Lienenklaus S, Weiss S, Sanders NN, Vandenbroucke RE, Libert C (2016) Topical imiquimod yields systemic effects due to unintended oral uptake. Sci Rep 6:20134. https://doi.org/10.1038/srep20134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gantier MP, Tong S, Behlke MA, Xu D, Phipps S, Foster PS, Williams BR (2008) TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol 180:2117–2124. https://doi.org/10.4049/jimmunol.180.4.2117

    Article  CAS  PubMed  Google Scholar 

  12. Celhar T, Fairhurst AM (2014) Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Front Pharmacol 5:265. https://doi.org/10.3389/fphar.2014.00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200. https://doi.org/10.1038/ni758

    Article  CAS  PubMed  Google Scholar 

  14. Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13:543–551. https://doi.org/10.1038/nm1590

    Article  CAS  PubMed  Google Scholar 

  15. Rönnblom L, Elkon KB (2010) Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol 6:339–347. https://doi.org/10.1038/nrrheum.2010.64

    Article  CAS  PubMed  Google Scholar 

  16. Lee SK, Silva DG, Martin JL, Pratama A, Hu X, Chang PP, Walters G, Vinuesa CG (2012) Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37:880–892. https://doi.org/10.1016/j.immuni.2012.10.010

    Article  CAS  Google Scholar 

  17. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392. https://doi.org/10.1016/j.immuni.2006.08.010

    Article  CAS  PubMed  Google Scholar 

  18. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428. https://doi.org/10.1016/j.immuni.2006.07.013

    Article  CAS  Google Scholar 

  19. Lau CM, Broughton C, Tabor AS et al (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202:1171–1177. https://doi.org/10.1084/jem.20050630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pawar RD, Patole PS, Ellwart A, Lech M, Segerer S, Schlondorff D, Anders HJ (2006) Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J Am Soc Nephrol 17:3365–3373. https://doi.org/10.1681/ASN.2006030263

    Article  CAS  PubMed  Google Scholar 

  21. Chodisetti SB, Fike AJ, Domeier PP et al (2020) Type II but not type I IFN signaling is indispensable for TLR7-promoted development of autoreactive B cells and systemic autoimmunity. J Immunol 204:796–809. https://doi.org/10.4049/jimmunol.1901175

    Article  CAS  PubMed  Google Scholar 

  22. Engel AL, Holt GE, Lu H (2011) The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol 4:275–289. https://doi.org/10.1586/ecp.11.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benson N, de Jongh J, Duckworth JD, Jones HM, Pertinez HE, Rawal JK, van Steeg TJ, Van der Graaf PH (2010) Pharmacokinetic-pharmacodynamic modeling of alpha interferon response induced by a Toll-like 7 receptor agonist in mice. Antimicrob Agents Chemother 54:1179–1185. https://doi.org/10.1128/AAC.00551-09

    Article  CAS  PubMed  Google Scholar 

  24. Savage P, Horton V, Moore J, Owens M, Witt P, Gore ME (1996) A phase I clinical trial of imiquimod, an oral interferon inducer, administered daily. Br J Cancer 74:1482–1486. https://doi.org/10.1038/bjc.1996.569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:1–9. https://doi.org/10.1038/s12276-018-0126-x

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Ohto U, Shibata T et al (2016) Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45:737–748. https://doi.org/10.1016/j.immuni.2016.09.011

    Article  CAS  Google Scholar 

  27. Brown GJ, Cañete PF, Wang H et al (2022) TLR7 gain-of-function genetic variation causes human lupus. Nature 605:349–356. https://doi.org/10.1038/s41586-022-04642-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Atsuko Tamamoto (Osaka Metropolitan University) for her technical assistance.

Funding

This study was supported by Grants-in-Aid (grant numbers: 16K09890 and 20K08773) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (M. Hashimoto) and Yakult Bio-Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. conducted experiments. M.S. and M.H. designed experiments and supervised the project. Y.T., M.S., and M.H. analyzed and interpreted the data and wrote the manuscript. Y.N. and M.K. assisted with the experiments. T.T. evaluated histological data. All the authors contributed to the discussions and provided critical feedback for drafting the manuscript.

Corresponding author

Correspondence to Mirei Shirakashi.

Ethics declarations

Ethics approval

All mice were maintained under specific pathogen-free conditions in our animal facility in accordance with the guidelines for animal care approved by Kyoto University (approval number: MedKyo 21535, 22116). The manuscript does not contain clinical studies or patient data.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takase, Y., Shirakashi, M., Nishida, Y. et al. Enteric Toll-like receptor 7 stimulation causes acute exacerbation in lupus-susceptible mice. Clin Rheumatol 42, 1185–1194 (2023). https://doi.org/10.1007/s10067-022-06467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06467-7

Keywords

Navigation