Skip to main content

Advertisement

Log in

High prevalence and risk factors for osteoporosis in 1839 patients with systemic sclerosis: a systematic review and meta-analysis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Osteoporosis is prevalent in patients with systemic sclerosis (SSc). Updated evidence is required to complement the previous systematic review on this topic to provide best practices. This systematic review and meta-analysis aimed to quantitatively synthesize data from studies concerning the prevalence and risk factors for osteoporosis among patients with SSc.

Methods

We searched PubMed, EMBASE, Web of Science, and ScienceDirect databases for potential studies published from inception to May 31, 2022. Eligibility screening, data extraction, and quality assessment of the retrieved articles were conducted independently by two reviewers. Then meta-analyses were performed to determine osteoporosis prevalence and risk factors in patients with SSc. Meta-regression analysis was conducted to explore the sources of heterogeneity.

Results

The pooled prevalence of osteoporosis in patients with SSc was 27% (95% CI, 24–31), with moderate heterogeneity (I2 = 61.6%). Meta-regression revealed no significant difference among all variables. And the presence of SSc increased the likelihood of having osteoporosis (OR = 3.05, 95% CI, 2.32–4.01) compared to controls. These significant risk factors for osteoporosis in SSc patients were age > 50 years (OR = 2.94, 95% CI, 1.52–5.68), menopause (OR = 3.90; 95% CI, 1.94–7.84), aging (MD = 8.40; 95% CI,6.10–10.71) and longer disease duration (MD = 4.78; 95% CI,1.83–7.73). However, female (OR = 1.45; 95% CI, 0.75–2.77), pulmonary arterial hypertension (OR = 0.50; 95% CI, 0.17–1.54), and diffuse cutaneous SSc (OR = 1.05; 95% CI, 0.75–1.48) were not significant risk factors for osteoporosis in SSc patients.

Conclusions

Osteoporosis was highly prevalent in patients with SSc, and the prevalence seemed to be high and similar in many countries. The age > 50 years, menopause, aging, and longer disease duration were identified as risk factors for osteoporosis in patients with SSc.

Key Points

• The pooled prevalence of osteoporosis in patients with SSc was 27% based on 22 included studies.

• SSc patients had an increased prevalence and risk of osteoporosis as compared to the healthy control population.

• Age > 50 years, menopause, aging, and longer disease duration might be associated with osteoporosis in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet (London, England) 390(10103):1685–1699. https://doi.org/10.1016/s0140-6736(17)30933-9

    Article  PubMed  Google Scholar 

  2. Cutolo M, Soldano S, Smith V (2019) Pathophysiology of systemic sclerosis: current understanding and new insights. Expert Rev Clin Immunol 15(7):753–764. https://doi.org/10.1080/1744666X.2019.1614915

    Article  CAS  PubMed  Google Scholar 

  3. Randone SB, Guiducci S, Cerinic MM (2008) Musculoskeletal involvement in systemic sclerosis. Best Pract Res Clin Rheumatol 22(2):339–350. https://doi.org/10.1016/j.berh.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  4. Varju C, Pentek M, Lorand V, Nagy G, Minier T, Czirjak L (2017) Musculoskeletal involvement in systemic sclerosis: an unexplored aspect of the disease. J Scleroderma Relat Disord 2(1):19–32. https://doi.org/10.5301/jsrd.5000228

    Article  Google Scholar 

  5. Saketkoo LA, Magnus JH, Doyle MK (2014) The primary care physician in the early diagnosis of systemic sclerosis: the cornerstone of recognition and hope. Am J Med Sci 347(1):54–63. https://doi.org/10.1097/MAJ.0b013e3182a55d24

    Article  PubMed  Google Scholar 

  6. Sampaio-Barros PD, Costa-Paiva L, Filardi S, Sachetto Z, Samara AM, Marques-Neto JF (2005) Prognostic factors of low bone mineral density in systemic sclerosis. Clin Exp Rheumatol 23(2):180–184

    CAS  PubMed  Google Scholar 

  7. Omair MA, Pagnoux C, McDonald-Blumer H, Johnson SR (2013) Low bone density in systemic sclerosis A systematic review. J Rheumatol 40(11):1881–1890. https://doi.org/10.3899/jrheum.130032

    Article  PubMed  Google Scholar 

  8. Iudici M, Fasano S, Iacono D, Russo B, Cuomo G, Valentini G (2014) Prevalence and factors associated with glucocorticoids (GC) use in systemic sclerosis (SSc): a systematic review and meta-analysis of cohort studies and registries. Clin Rheumatol 33(2):153–164. https://doi.org/10.1007/s10067-013-2422-0

    Article  PubMed  Google Scholar 

  9. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clin Res Ed) 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  Google Scholar 

  10. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F et al (2015) The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 8(1):2–10. https://doi.org/10.1111/jebm.12141

    Article  PubMed  Google Scholar 

  11. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed) 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  12. Yuen SY, Rochwerg B, Ouimet J, Pope JE (2008) Patients with scleroderma may have increased risk of osteoporosis. A comparison to rheumatoid arthritis and noninflammatory musculoskeletal conditions. J Rheumatol 35(6):1073–8

    PubMed  Google Scholar 

  13. Souza RB, Borges CT, Takayama L, Aldrighi JM, Pereira RM (2006) Systemic sclerosis and bone loss: the role of the disease and body composition. Scand J Rheumatol 35(5):384–387. https://doi.org/10.1080/03009740600704296

    Article  CAS  PubMed  Google Scholar 

  14. Sharma S, Dhooria A, Singh T, Dhir V, Chattopadhyay A, Mishra D, Jain S (2019) Bone mineral density is decreased in patients with systemic sclerosis and correlates with serum intact parathormone levels: a cross-sectional study. Indian J Rheumatol 14:109–112

    Article  Google Scholar 

  15. Shahin AA, Zayed HS, Sayed S, Gomaa W (2013) Bone mineral density in patients with systemic sclerosis and its association with hand involvement. Egypt Rheumatologist 35(4):233–238. https://doi.org/10.1016/j.ejr.2013.08.001

    Article  Google Scholar 

  16. Ruaro B, Casabella A, Paolino S, Pizzorni C, Ghio M, Seriolo C et al (2018) Dickkopf-1 (Dkk-1) serum levels in systemic sclerosis and rheumatoid arthritis patients: correlation with the Trabecular Bone Score (TBS). Clin Rheumatol 37(11):3057–3062. https://doi.org/10.1007/s10067-018-4322-9

    Article  PubMed  Google Scholar 

  17. Rios-Fernandez R, Callejas-Rubio JL, Fernandez-Roldan C, Simeon-Aznar CP, Garcia-Hernandez F, Castillo-Garcia MJ et al (2012) Bone mass and vitamin D in patients with systemic sclerosis from two Spanish regions. Clin Exp Rheumatol 30(6):905–911

    PubMed  Google Scholar 

  18. Paolino S, Pacini G, Schenone C, Patane M, Sulli A, Sukkar SG et al (2020) Nutritional status and bone microarchitecture in a cohort of systemic sclerosis patients. Nutrients 12(6):1632. https://doi.org/10.3390/nu12061632

  19. Paolino S, Gotelli E, Goegan F, Casabella A, Ferrari G, Patane M et al (2021) Body composition and bone status in relation to microvascular damage in systemic sclerosis patients. J Endocrinol Invest 44(2):255–264. https://doi.org/10.1007/s40618-020-01234-4

    Article  CAS  PubMed  Google Scholar 

  20. Panopoulos S, Tektonidou M, Drosos AA, Liossis SN, Dimitroulas T, Garyfallos A et al (2018) Prevalence of comorbidities in systemic sclerosis versus rheumatoid arthritis: a comparative, multicenter, matched-cohort study. Arthritis Res Ther 20(1):267. https://doi.org/10.1186/s13075-018-1771-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omair MA, McDonald-Blumer H, Johnson SR (2014) Bone disease in systemic sclerosis: outcomes and associations. Clin Exp Rheumatol 32(6 Suppl 86):S-28–32

  22. Mok CC, Chan PT, Chan KL, Ma KM (2013) Prevalence and risk factors of low bone mineral density in Chinese patients with systemic sclerosis: a case-control study. Rheumatology (Oxford) 52(2):296–303. https://doi.org/10.1093/rheumatology/kes240

    Article  PubMed  Google Scholar 

  23. Marot M, Valery A, Esteve E, Bens G, Muller A, Rist S et al (2015) Prevalence and predictive factors of osteoporosis in systemic sclerosis patients: a case-control study. Oncotarget 6(17):14865–73. https://doi.org/10.18632/oncotarget.3806

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kilic G, Kilic E, Akgul O, Ozgocmen S (2016) Increased risk for bone loss in women with systemic sclerosis: a comparative study with rheumatoid arthritis. Int J Rheum Dis 19(4):405–411. https://doi.org/10.1111/1756-185X.12242

    Article  CAS  PubMed  Google Scholar 

  25. Ibn Yacoub Y, Amine B, Laatiris A, Wafki F, Znat F, Hajjaj-Hassouni N (2012) Bone density in Moroccan women with systemic scleroderma and its relationships with disease-related parameters and vitamin D status. Rheumatol Int 32(10):3143–3148. https://doi.org/10.1007/s00296-011-2150-1

    Article  PubMed  Google Scholar 

  26. Horvath A, Vegh E, Pusztai A, Petho Z, Hamar A, Czokolyova M et al (2019) Complex assessment of bone mineral density, fracture risk, vitamin D status, and bone metabolism in Hungarian systemic sclerosis patients. Arthritis Res Ther 21(1):274. https://doi.org/10.1186/s13075-019-2072-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corrado A, Colia R, Mele A, Di Bello V, Trotta A, Neve A et al (2015) Relationship between body mass composition, bone mineral density, skin fibrosis and 25(OH) vitamin D serum levels in systemic sclerosis. PLoS ONE 10(9):e0137912. https://doi.org/10.1371/journal.pone.0137912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuealee W, Foocharoen C, Mahakkanukrauh A, Suwannaroj S, Pongchaiyakul C, Nanagara R (2021) Prevalence and predictive factors of osteoporosis in Thai systemic sclerosis. Sci Rep 11(1):9424. https://doi.org/10.1038/s41598-021-88792-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caimmi C, Caramaschi P, Barausse G, Orsolini G, Idolazzi L, Gatti D et al (2016) Bone metabolism in a large cohort of patients with systemic sclerosis. Calcif Tissue Int 99(1):23–29. https://doi.org/10.1007/s00223-016-0119-5

    Article  CAS  PubMed  Google Scholar 

  30. Bimal G, Sahhar J, Savanur M, Ngian GS (2022) Screening rates and prevalence of osteoporosis in a real-world, Australian systemic sclerosis cohort. Int J Rheum Dis 25(2):175–181. https://doi.org/10.1111/1756-185X.14254

    Article  PubMed  Google Scholar 

  31. Avouac J, Koumakis E, Toth E, Meunier M, Maury E, Kahan A et al (2012) Increased risk of osteoporosis and fracture in women with systemic sclerosis: a comparative study with rheumatoid arthritis. Arthritis Care Res 64(12):1871–1878. https://doi.org/10.1002/acr.21761

    Article  Google Scholar 

  32. Alexandersson BT, Geirsson AJ, Olafsson I, Franzson L, Sigurdsson G, Gudbjornsson B (2007) Bone mineral density and bone turnover in systemic sclerosis. Laeknabladid 93(7–8):535–541

    PubMed  Google Scholar 

  33. Alekperov Rcapital Te C, Smirnov AV, Toroptsova NV, Kudinsky DM (2016) [Bone mineral density in patients with scleroderma systematica]. Ter Arkh 88(5):37–42. https://doi.org/10.17116/terarkh201688537-42

  34. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report WHO Study Group. Osteoporos Int 4(6):368–381. https://doi.org/10.1007/BF01622200

    Article  CAS  PubMed  Google Scholar 

  35. Gyger G, Baron M (2012) Gastrointestinal manifestations of scleroderma: recent progress in evaluation, pathogenesis, and management. Curr Rheumatol Rep 14(1):22–29. https://doi.org/10.1007/s11926-011-0217-3

    Article  PubMed  Google Scholar 

  36. Isola G, Williams RC, Lo Gullo A, Ramaglia L, Matarese M, Iorio-Siciliano V et al (2017) Risk association between scleroderma disease characteristics, periodontitis, and tooth loss. Clin Rheumatol 36(12):2733–2741. https://doi.org/10.1007/s10067-017-3861-9

    Article  PubMed  Google Scholar 

  37. Huang Z, Himes JH, McGovern PG (1996) Nutrition and subsequent hip fracture risk among a national cohort of white women. Am J Epidemiol 144(2):124–134. https://doi.org/10.1093/oxfordjournals.aje.a008899

    Article  CAS  PubMed  Google Scholar 

  38. Bischoff-Ferrari HA, Willett WC, Wong JB, Stuck AE, Staehelin HB, Orav J et al (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169(6):551–561. https://doi.org/10.1001/archinternmed.2008.600

    Article  CAS  PubMed  Google Scholar 

  39. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B et al (2019) Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev 40(4):1109–1151. https://doi.org/10.1210/er.2018-00126

    Article  PubMed  Google Scholar 

  40. Hewison M (2012) An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 76(3):315–325. https://doi.org/10.1111/j.1365-2265.2011.04261.x

    Article  CAS  PubMed  Google Scholar 

  41. Mpalaris V, Anagnostis P, Goulis DG, Iakovou I (2015) Complex association between body weight and fracture risk in postmenopausal women. Obes Rev Off J Int Assoc Study Obes 16(3):225–233. https://doi.org/10.1111/obr.12244

    Article  CAS  Google Scholar 

  42. Kotulska A, Kucharz EJ, Brzezinska-Wcislo L, Wadas U (2001) A decreased serum leptin level in patients with systemic sclerosis. Clin Rheumatol 20(4):300–302. https://doi.org/10.1007/s100670170053

    Article  CAS  PubMed  Google Scholar 

  43. Upadhyay J, Farr OM, Mantzoros CS (2015) The role of leptin in regulating bone metabolism. Metabolism 64(1):105–113. https://doi.org/10.1016/j.metabol.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  44. Koumakis E, Avouac J, Winzenrieth R, Toth E, Payet J, Kahan A et al (2015) Trabecular bone score in female patients with systemic sclerosis: comparison with rheumatoid arthritis and influence of glucocorticoid exposure. J Rheumatol 42(2):228–235. https://doi.org/10.3899/jrheum.140752

    Article  CAS  PubMed  Google Scholar 

  45. Chotiyarnwong P, McCloskey EV (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16(8):437–447. https://doi.org/10.1038/s41574-020-0341-0

    Article  PubMed  Google Scholar 

  46. Asano Y (2018) Systemic sclerosis. J Dermatol 45(2):128–138. https://doi.org/10.1111/1346-8138.14153

    Article  PubMed  Google Scholar 

  47. Zhang W, Dang K, Huai Y, Qian A (2020) Osteoimmunology: the regulatory roles of T lymphocytes in osteoporosis. Front Endocrinol (Lausanne) 11:465. https://doi.org/10.3389/fendo.2020.00465

    Article  PubMed  Google Scholar 

  48. Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C et al (2018) TNF-alpha suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis. Bone 117:161–170. https://doi.org/10.1016/j.bone.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  49. Hendrickx G, Boudin E, Van Hul W (2015) A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 11(8):462–474. https://doi.org/10.1038/nrrheum.2015.48

    Article  PubMed  Google Scholar 

  50. Eastell R, O’Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT et al (2016) Postmenopausal osteoporosis. Nat Rev Dis Primers 2:16069. https://doi.org/10.1038/nrdp.2016.69

    Article  PubMed  Google Scholar 

  51. Zhao R (2013) Immune regulation of bone loss by Th17 cells in oestrogen-deficient osteoporosis. Eur J Clin Invest 43(11):1195–1202

    CAS  PubMed  Google Scholar 

  52. Fischer V, Haffner-Luntzer M (2022) Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol 123:14–21. https://doi.org/10.1016/j.semcdb.2021.05.014

    Article  PubMed  Google Scholar 

  53. Frediani B, Baldi F, Falsetti P, Acciai C, Filippou G, Spreafico A et al (2004) Bone mineral density in patients with systemic sclerosis. Ann Rheum Dis 63(3):326–327. https://doi.org/10.1136/ard.2003.011064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Avouac J, Walker UA, Hachulla E, Riemekasten G, Cuomo G, Carreira PE et al (2016) Joint and tendon involvement predict disease progression in systemic sclerosis: a EUSTAR prospective study. Ann Rheum Dis 75(1):103–109. https://doi.org/10.1136/annrheumdis-2014-205295

    Article  PubMed  Google Scholar 

  55. Horváth Á, Végh E, Pusztai A, Pethő Z, Hamar A, Czókolyová M et al (2019) Complex assessment of bone mineral density, fracture risk, vitamin D status, and bone metabolism in Hungarian systemic sclerosis patients. Arthritis Res Ther 21(1):274. https://doi.org/10.1186/s13075-019-2072-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malik N, McCarthy K, Minai OA (2012) Prevalence and significance of decreased bone density in pulmonary arterial hypertension. South Med J 105(7):344–349. https://doi.org/10.1097/SMJ.0b013e31825b8117

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciated the support from the National Natural Science Foundation of China (82273710) and the National Innovation and Entrepreneurship Training Program for College Students (202010366046). We were grateful to the Medical Data Processing Center of the School of Public Health, which provided the data analysis in this study.

Author information

Authors and Affiliations

Authors

Contributions

Xinhua Tu, Chengcheng Li, and Jing Wang contributed to conceptualizing the study and the design, drafting the manuscript, and analyzing and interpreting the data. Meng Zhuang, Lian Liu, and Chengwei Xu contributed to the collection, integration, and interpretation of the data. All authors contributed substantially to the review of the manuscript before submission. All authors critically evaluated and revised the manuscript and approved the version submitted.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Ethical approval

Not required.

Informed consent

Not required.

Consent for publication

This article had been carefully prepared, unpublished, and did not consider applying for other journals. All the authors met the uniform requirements for manuscripts submitted to Clinical Rheumatology Journals criteria for authorship and approved the manuscript.

Conflict of interest

The authors declared no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Li, C., Zhuang, M. et al. High prevalence and risk factors for osteoporosis in 1839 patients with systemic sclerosis: a systematic review and meta-analysis. Clin Rheumatol 42, 1087–1099 (2023). https://doi.org/10.1007/s10067-022-06460-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06460-0

Keywords

Navigation