Skip to main content

Advertisement

Log in

Association of − 717 A > G (rs2794521) CRP polymorphism with high cardiovascular risk by C-reactive protein in systemic lupus erythematosus patients

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease where genetic factors have been related to SLE susceptibility and disease severity. CRP polymorphisms have been associated with high C-reactive protein (CRP) serum levels, cardiovascular disease (CVD), and high clinical disease activity in SLE patients; however, the evidence is still inconclusive.

Objective

This study was aimed to assess the association of the − 717 A > G, − 409 G > A, + 1444 C > T, and + 1846 C > T CRP polymorphisms with genetic susceptibility, clinical disease activity, and CVD risk in Mexican-mestizo SLE patients.

Methods

A comparative cross-sectional study was conducted on 369 unrelated women: 183 with SLE according to the 1997 SLE-ACR criteria and 186 healthy subjects (HS). The clinical disease activity was assessed by the Mex-SLEDAI score; CRP and lipid profile were quantified by turbidimetry and colorimetric-enzymatic assays, respectively. The CRP polymorphisms genotyping was carried out by allelic discrimination.

Results

SLE patients with − 717 AA genotype had higher CRP serum levels than SLE carriers of AG and GG genotypes (AA = 5 mg/L vs. AG = 3.2 mg/L vs. GG = 2.4 mg/L; p = 0.01), and the AA genotype was associated with high CVD risk by CRP in SLE patients (OR = 3; CI: 1.2–7.6; p < 0.01).

Conclusions

The − 717 A > G CRP polymorphism is a risk factor for high CRP levels and high CVD risk in Mexican-mestizo SLE patients.

Key Points

Cardiovascular disease is one of the major causes of death in SLE patients due to the higher prevalence of traditional and non-traditional cardiovascular risk factors.

C-reactive protein is a liver-derived acute-phase protein suggested as one powerful independent risk predictor factor for cardiovascular disease.

Single nucleotide polymorphisms in CRP have been suggested as genetic susceptibility factors that could modify the SLE pathophysiology outcomes.

Mexican-mestizo SLE patients carrying the −717 A>G CRP AA genotype had 3-fold high cardiovascular disease risk than SLE patients with AG or GG genotypes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pan L, Lu M-P, Wang J-H et al (2020) Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr 16:19–30. https://doi.org/10.1007/s12519-019-00229-3

    Article  PubMed  Google Scholar 

  2. Giannelou M, Mavragani CP (2017) Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J Autoimmun 82:1–12. https://doi.org/10.1016/j.jaut.2017.05.008

    Article  PubMed  Google Scholar 

  3. Enocsson H, Karlsson J, Li H-Y et al (2021) The complex role of C-reactive protein in systemic lupus erythematosus. JCM 10:5837. https://doi.org/10.3390/jcm10245837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boncler M, Wu Y, Watala C (2019) The multiple faces of C-reactive protein—physiological and pathophysiological implications in cardiovascular disease. Molecules 24:2062. https://doi.org/10.3390/molecules24112062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. (2010) C-reactive protein concentration and risk of coronary heart 605 disease, stroke, and mortality: an individual participant meta-analysis. 375:9. https://doi.org/10.1016/S0140-6736(09)61717-7

  6. Salomão RG, de Carvalho LM, Izumi C et al (2018) Homocysteine, folate, hs-C-reactive protein, tumor necrosis factor alpha and inflammatory proteins: are these biomarkers related to nutritional status and cardiovascular risk in childhood-onset systemic lupus erythematosus? Pediatr Rheumatol 16:4. https://doi.org/10.1186/s12969-017-0220-y

    Article  Google Scholar 

  7. Pocovi-Gerardino G, Correa-Rodríguez M, Rubio J-LC et al (2020) The relationships of high-sensitivity C-reactive protein and homocysteine levels with disease activity, damage accrual, and cardiovascular risk in systemic lupus erythematosus. Biol Res Nurs 22:169–177. https://doi.org/10.1177/1099800419889192

    Article  CAS  PubMed  Google Scholar 

  8. Meyer O (2010) Anti-CRP antibodies in systemic lupus erythematosus. Joint Bone Spine 77:384–389. https://doi.org/10.1016/j.jbspin.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  9. Pesqueda-Cendejas K, Parra-Rojas I, Mora-García PE et al (2022) CRP serum levels are associated with high cardiometabolic risk and clinical disease activity in systemic lupus erythematosus patients. JCM 11:1849. https://doi.org/10.3390/jcm11071849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rullo OJ, Tsao BP (2013) Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 72:ii56–ii61. https://doi.org/10.1136/annrheumdis-2012-202351

    Article  CAS  PubMed  Google Scholar 

  11. Jonsen A, Gunnarsson I, Gullstrand B et al (2007) Association between SLE nephritis and polymorphic variants of the CRP and Fc RIIIa genes. Rheumatology 46:1417–1421. https://doi.org/10.1093/rheumatology/kem167

    Article  CAS  PubMed  Google Scholar 

  12. Delongui F, Lozovoy MAB, Iriyoda TMV et al (2017) C-reactive protein +1444CT (rs1130864) genetic polymorphism is associated with the susceptibility to systemic lupus erythematosus and C-reactive protein levels. Clin Rheumatol 36:1779–1788. https://doi.org/10.1007/s10067-017-3695-5

    Article  PubMed  Google Scholar 

  13. Martínez-Calleja A, Quiróz-Vargas I, Parra-Rojas I et al (2012) Haplotypes in the CRP gene associated with increased BMI and levels of CRP in subjects with type 2 diabetes or obesity from southwestern Mexico. Exp Diabetes Res 2012:1–7. https://doi.org/10.1155/2012/982683

    Article  CAS  Google Scholar 

  14. Flores-Alfaro E, Fernández-Tilapa G, Salazar-Martínez E et al (2012) Common variants in the CRP gene are associated with serum C-reactive protein levels and body mass index in healthy individuals in Mexico. Genet Mol Res 11:2258–2267. https://doi.org/10.4238/2012.May.14.5

    Article  CAS  PubMed  Google Scholar 

  15. Akbarzadeh Najar R, Ghaderian SMH, Tabatabaei Panah AS (2012) C-reactive protein (CRP) gene polymorphisms: implication in CRP plasma levels and susceptibility to acute myocardial infarction. Mol Biol Rep 39:3705–3712. https://doi.org/10.1007/s11033-011-1145-z

    Article  CAS  PubMed  Google Scholar 

  16. Paik JK, Kim OY, Koh SJ et al (2007) Additive effect of interleukin-6 and C-reactive protein (CRP) single nucleotide polymorphism on serum CRP concentration and other cardiovascular risk factors. Clin Chim Acta 380:68–74. https://doi.org/10.1016/j.cca.2006.11.011

    Article  CAS  PubMed  Google Scholar 

  17. Atisha-Fregoso Y, Lima G, Carrillo-Maravilla E et al (2018) C-reactive protein (CRP) polymorphisms and haplotypes are associated with SLE susceptibility and activity but not with serum CRP levels in Mexican population. Clin Rheumatol 37:1817–1824. https://doi.org/10.1007/s10067-018-4059-5

    Article  PubMed  Google Scholar 

  18. Enocsson H, Gullstrand B, Eloranta M-L et al (2021) C-reactive protein levels in systemic lupus erythematosus are modulated by the interferon gene signature and CRP gene polymorphism rs1205. Front Immunol 11:622326. https://doi.org/10.3389/fimmu.2020.622326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hage FG, Szalai AJ (2007) C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol 50:1115–1122. https://doi.org/10.1016/j.jacc.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  20. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725. https://doi.org/10.1002/art.1780400928

    Article  CAS  PubMed  Google Scholar 

  21. Ruiz-Quezada S, Vázquez-Del Mercado M, Parra-Rojas I et al (2004) Genotype and allele frequency of PAI-1 promoter polymorphism in healthy subjects from the west of Mexico. Association with biochemical and hematological parameters. Ann Genet 47:155–162. https://doi.org/10.1016/j.anngen.2003.12.001

    Article  PubMed  Google Scholar 

  22. Uribe AG, Vilá LM, McGwin G et al (2004) The Systemic Lupus Activity Measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J Rheumatol 31:1934–1940

    PubMed  Google Scholar 

  23. Gladman D, Ginzler E, Goldsmith C et al (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39:363–369. https://doi.org/10.1002/art.1780390303

    Article  CAS  PubMed  Google Scholar 

  24. World Health Organization (2011) Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11. https://www.who.int/publications/i/item/9789241501491

  25. World Health Organization (2000) Obesity: Preventing and managing the global epidemic, In: WHO technical report series, Geneva 894. http://www.who.int/entity/nutrition/publications/obesity/WHO_TRS_894/en/index.html

  26. Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis: waist-to-height ratio as a screening tool. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x

    Article  CAS  PubMed  Google Scholar 

  27. Wakabayashi I, Daimon T (2015) The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin Chim Acta 438:274–278. https://doi.org/10.1016/j.cca.2014.08.042

    Article  CAS  PubMed  Google Scholar 

  28. Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511. https://doi.org/10.1161/01.CIR.0000052939.59093.45

    Article  PubMed  Google Scholar 

  29. Campos-López B, Meza-Meza MR, Parra-Rojas I et al (2021) Association of cardiometabolic risk status with clinical activity and damage in systemic lupus erythematosus patients: a cross-sectional study. Clin Immunol 222:108637. https://doi.org/10.1016/j.clim.2020.108637

    Article  CAS  PubMed  Google Scholar 

  30. López González ÁA, Rivero Ledo YI, Vicente Herrero MT et al (2015) Índices aterogénicos en trabajadores de diferentes sectores laborales del área mediterránea española. Clínica e Investigación en Arteriosclerosis 27:118–128. https://doi.org/10.1016/j.arteri.2014.10.004

    Article  PubMed  Google Scholar 

  31. Kahn HS (2005) The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26. https://doi.org/10.1186/1471-2261-5-26

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. OpenEpi: open source epidemiologic statistics for public health, version 2.3.1—ScienceOpen. https://www.scienceopen.com/document?vid=61cdd360-9883-4330-8c18-3f0341b0f715. Accessed 11 Feb 2022

  34. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67. https://doi.org/10.1093/genetics/49.1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 19(4):519–23

    Article  CAS  PubMed  Google Scholar 

  36. Karassa FB, Trikalinos TA, Ioannidis JPA (2004) The role of FcγRIIA and IIIA polymorphisms in autoimmune diseases. Biomed Pharmacother 58:286–291. https://doi.org/10.1016/j.biopha.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  37. Brull DJ, Serrano N, Zito F et al (2003) Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease. ATVB 23:2063–2069. https://doi.org/10.1161/01.ATV.0000084640.21712.9C

    Article  CAS  Google Scholar 

  38. Wang L, Lu X, Li Y et al (2009) Functional analysis of the C-reactive protein (CRP) gene -717A>G polymorphism associated with coronary heart disease. BMC Med Genet 10:73. https://doi.org/10.1186/1471-2350-10-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Zhao J, Huang J et al (2005) ?717A>G polymorphism of human C-reactive protein gene associated with coronary heart disease in ethnic Han Chinese: the Beijing atherosclerosis study. J Mol Med 83:72–78. https://doi.org/10.1007/s00109-004-0585-5

    Article  CAS  PubMed  Google Scholar 

  40. Miller DT, Zee RYL, Suk Danik J et al (2005) Association of common CRP gene variants with CRP levels and cardiovascular events. Ann Hum Genet 69:623–638. https://doi.org/10.1111/j.1529-8817.2005.00210.x

    Article  CAS  PubMed  Google Scholar 

  41. Reynoso-Villalpando GL, Padilla-Gutiérrez JR, Valdez-Haro A et al (2017) Relationship between C-reactive protein serum concentration and the 1846 C>T (rs1205) polymorphism in patients with acute coronary syndrome from western Mexico. Genet Test Mol Biomarkers 21:334–340. https://doi.org/10.1089/gtmb.2016.0312

    Article  CAS  PubMed  Google Scholar 

  42. Eiriksdottir G, Smith AV, Aspelund T et al (2009) The interaction of adiposity with the CRP gene affects CRP levels: age, gene/environment susceptibilty-Reykjavik study. Int J Obes 33:267–272. https://doi.org/10.1038/ijo.2008.274

    Article  CAS  Google Scholar 

  43. Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A et al (2008) Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 135:448–461. https://doi.org/10.1002/ajpa.20765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the clinical and logistic support for the recruitment of the SLE patients given by the Rheumatologists from the Departamento de Reumatología, O.P.D. Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico.

Funding

This study was supported by Grant Programa de Apoyo a la Mejora en las Condiciones de Producción de los Miembros del SNI y SNCA 2019–2021 from the University of Guadalajara for Ulises de la Cruz-Mosso, PhD (U.D.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: UDCM; data curation: PEMG, AIRB, MRMM, BCL, and MRE; formal analysis: KPC, IPR, MMB, AIRB, MRMM, BCL, MRE, LABH, JMMO, SCC, and UDCM; funding acquisition: UDCM; investigation: KPC, PEMG, AIRB, MRMM, BCL, MRE, and SCC; methodology: IPR, MMB, and UDCM; project administration: UDCM; writing—original draft: KPC and UDCM; writing—review and editing: KPC, IPR, PMG, MMB, JMMO, SCC, and UDCM.

Corresponding author

Correspondence to Ulises De la Cruz-Mosso.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Research Ethical Committee of the University of Guadalajara (CI-05018 CUCS-UdeG), based on national and international ethical guidelines. Before enrollment in the study, all SLE patients and HS provided written informed consent according to the ethical guidelines.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesqueda-Cendejas, K., Parra-Rojas, I., Meza-Meza, M.R. et al. Association of − 717 A > G (rs2794521) CRP polymorphism with high cardiovascular risk by C-reactive protein in systemic lupus erythematosus patients. Clin Rheumatol 42, 761–772 (2023). https://doi.org/10.1007/s10067-022-06430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06430-6

Keywords

Navigation