Skip to main content

Advertisement

Log in

Sex hormones, body mass index, and related comorbidities associated with developing Sjögren’s disease: a nested case–control study

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Sjögren’s disease (SjD), a highly female predominant systemic autoimmune disease, peaks in perimenopause. Prior studies lack details on timing or type of sex hormone exposure. We examined SjD risk using endogenous and exogenous hormone exposure and related comorbidities.

Methods

We performed a retrospective case–control study of adult women, nested within a population cohort. Cases had SjD diagnosed by a rheumatology provider or two SjD diagnoses from a non-rheumatology provider with a positive anti-SSA antibody or salivary gland biopsy. Cases were age-matched to three SjD-free controls. We calculated modified composite estrogen scores (mCES) and collected demographics, comorbidities, and endogenous and exogenous hormone exposures. Risk ratios were adjusted for demographics.

Results

Of 546 SjD cases and 1637 age-matched controls, mCES was not significantly associated with SjD in adjusted models. The top individual hormone exposures associated with SjD included estrogen replacement therapy (ERT; RR 1.78 [95% CI 1.47–2.14]), polycystic ovarian syndrome (1.65 [1.28–2.12]), and hysterectomy without bilateral oophorectomy (1.51 [1.13–2.03]). We identified comorbidities preceding SjD including fibromyalgia, pulmonary disease, diabetes, lymphoma, osteoporosis, peripheral vascular disease, and renal disease. Taking comorbidities into account, we developed a predictive model for SjD that included fibromyalgia (2.50 [1.93–3.25]), osteoporosis (1.84 [1.27–2.66]), hormone replacement therapy (HRT) (1.61 [1.22–2.12]), diabetes (0.27 [0.13–0.50]), and body mass index (BMI) (0.97 [0.95–0.99]).

Conclusions

We report a novel algorithm to improve identifying patients at risk for SjD and describe sex hormone association with SjD. Finally, we report new comorbidities associated with SjD decrease, BMI and diabetes, and increase, lymphoma and osteoporosis..

Key Points

•Given female predominance and typical perimenopausal onset, sex hormones should be considered when studying comorbidities in Sjögren’s disease.

•The top exposures associated with developing Sjögren’s disease included fibromyalgia, osteoporosis, and use of hormone replacement therapy. Possible protective factors included prior diabetes and higher body mass index.

•We used our newly identified exposures to generate a predictive algorithm, which has potential to improve diagnosis and pathogenic insights into Sjögren’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maciel G, Crowson CS, Matteson EL, Cornec D (2016) Prevalence of primary Sjogren’s syndrome in a population-based cohort in the United States. Arthritis Care Res (Hoboken). https://doi.org/10.1002/acr.23173

    Article  Google Scholar 

  2. McCoy SS, Sampene E, Baer AN (2020) Association of Sjögren’s syndrome with reduced lifetime sex hormone exposure: a case-control study. Arthritis Care Res (Hoboken) 72(9):1315–1322. https://doi.org/10.1002/acr.24014

    Article  CAS  Google Scholar 

  3. Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC et al (2016) X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47, XXX in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol 68(5):1290–1300. https://doi.org/10.1002/art.39560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forsblad-d’Elia H, Carlsten H, Labrie F, Konttinen YT, Ohlsson C (2009) Low serum levels of sex steroids are associated with disease characteristics in primary Sjogren’s syndrome; supplementation with dehydroepiandrosterone restores the concentrations. J Clin Endocrinol Metab 94(6):2044–2051. https://doi.org/10.1210/jc.2009-0106

    Article  CAS  PubMed  Google Scholar 

  5. Haga HJ, Gjesdal CG, Irgens LM, Ostensen M (2005) Reproduction and gynaecological manifestations in women with primary Sjögren’s syndrome: a case-control study. Scand J Rheumatol 34(1):45–48. https://doi.org/10.1080/03009740510017959

    Article  CAS  PubMed  Google Scholar 

  6. Kieke AL, Kieke BA Jr, Kopitzke SL, McClure DL, Belongia EA, VanWormer JJ et al (2015) Validation of health event capture in the Marshfield epidemiologic study area. Clin Med Res 13(3–4):103–111. https://doi.org/10.3121/cmr.2014.1246

    Article  PubMed  PubMed Central  Google Scholar 

  7. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V et al (2013) Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc 20(e1):e147–e154. https://doi.org/10.1136/amiajnl-2012-000896

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh JA, Cleveland JD (2019) The risk of Sjogren’s syndrome in the older adults with gout: a medicare claims study. Joint Bone Spine 86(5):615–619. https://doi.org/10.1016/j.jbspin.2019.01.022

    Article  PubMed  Google Scholar 

  9. Maciel G, Crowson CS, Matteson EL, Cornec D (2017) Incidence and mortality of physician-diagnosed primary Sjögren syndrome: time trends over a 40-year period in a population-based US cohort. Mayo Clin Proc 92(5):734–743. https://doi.org/10.1016/j.mayocp.2017.01.020

    Article  PubMed  Google Scholar 

  10. Chung CP, Rohan P, Krishnaswami S, McPheeters ML (2013) A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data. Vaccine 31(Suppl 10):K41-61. https://doi.org/10.1016/j.vaccine.2013.03.075

    Article  PubMed  Google Scholar 

  11. Merz CN, Johnson BD, Berga SL, Braunstein GD, Azziz R, Yang Y et al (2009) Total estrogen time and obstructive coronary disease in women: insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Womens Health (Larchmt) 18(9):1315–1322. https://doi.org/10.1089/jwh.2008.1063

    Article  Google Scholar 

  12. Gatto NM, Deapen D, Stoyanoff S, Pinder R, Narayan S, Bordelon Y et al (2014) Lifetime exposure to estrogens and Parkinson’s disease in California teachers. Parkinsonism Relat Disord 20(11):1149–1156. https://doi.org/10.1016/j.parkreldis.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  13. Park HK, Ilango S, Charriez CM, Checkoway H, Riley D, Standaert DG et al (2018) Lifetime exposure to estrogen and progressive supranuclear palsy: environmental and genetic PSP study. Mov Disord 33(3):468–472. https://doi.org/10.1002/mds.27336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geerlings MI, Ruitenberg A, Witteman JC, van Swieten JC, Hofman A, van Duijn CM et al (2001) Reproductive period and risk of dementia in postmenopausal women. JAMA 285(11):1475–1481. https://doi.org/10.1001/jama.285.11.1475

    Article  CAS  PubMed  Google Scholar 

  15. de Kleijn MJ, van der Schouw YT, Verbeek AL, Peeters PH, Banga JD, van der Graaf Y (2002) Endogenous estrogen exposure and cardiovascular mortality risk in postmenopausal women. Am J Epidemiol 155(4):339–345. https://doi.org/10.1093/aje/155.4.339

    Article  PubMed  Google Scholar 

  16. Prince MJ, Acosta D, Guerra M, Huang Y, Jimenez-Velazquez IZ, Llibre Rodriguez JJ et al (2018) Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China; A 10/66 population-based cohort study. PLoS ONE 13(2):e0192889. https://doi.org/10.1371/journal.pone.0192889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Lange AG, Barth C, Kaufmann T, Maximov II, van der Meer D, Agartz I et al (2020) Women’s brain aging: effects of sex-hormone exposure, pregnancies, and genetic risk for Alzheimer’s disease. Hum Brain Mapp 41(18):5141–5150. https://doi.org/10.1002/hbm.25180

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oh H, Coburn SB, Matthews CE, Falk RT, LeBlanc ES, Wactawski-Wende J et al (2017) Anthropometric measures and serum estrogen metabolism in postmenopausal women: the Women’s Health Initiative Observational Study. Breast Cancer Res 19(1):28. https://doi.org/10.1186/s13058-017-0810-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulun SE (2013) Uterine fibroids. N Engl J Med 369(14):1344–1355. https://doi.org/10.1056/NEJMra1209993

    Article  CAS  PubMed  Google Scholar 

  20. Sharma A, Welt CK (2021) Practical approach to hyperandrogenism in women. Med Clin North Am 105(6):1099–1116. https://doi.org/10.1016/j.mcna.2021.06.008

    Article  PubMed  Google Scholar 

  21. Xu X, Jones M, Mishra GD (2020) Age at natural menopause and development of chronic conditions and multimorbidity: results from an Australian prospective cohort. Hum Reprod 35(1):203–211. https://doi.org/10.1093/humrep/dez259

    Article  PubMed  Google Scholar 

  22. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383. https://doi.org/10.1016/0021-9681(87)90171-8

    Article  CAS  PubMed  Google Scholar 

  23. Austin PC, Tu JV (2004) Bootstrap methods for developing predictive models. Am Stat 58(2):131–137

    Article  Google Scholar 

  24. Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New york

    Google Scholar 

  25. Harrell FE Jr (2001) Regression modelling strategies: with applications to linear models, logistic regression, and survival analyses. Springer-Verlag, New York

    Book  Google Scholar 

  26. Lu MC, Hsieh MC, Koo M, Lai NS (2016) Risk of Sjögren’s syndrome in Taiwanese female adults with irregular menstrual cycles: a population-based case-control study. Rheumatol Int 36(1):155–160. https://doi.org/10.1007/s00296-015-3324-z

    Article  PubMed  Google Scholar 

  27. Hull MG (1987) Epidemiology of infertility and polycystic ovarian disease: endocrinological and demographic studies. Gynecol Endocrinol 1(3):235–245. https://doi.org/10.3109/09513598709023610

    Article  CAS  PubMed  Google Scholar 

  28. Matarese G, De Placido G, Nikas Y, Alviggi C (2003) Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease? Trends Mol Med 9(5):223–228. https://doi.org/10.1016/s1471-4914(03)00051-0

    Article  CAS  PubMed  Google Scholar 

  29. Badaway SZ, Cuenca V, Freliech H, Stefanu C (1990) Endometrial antibodies in serum and peritoneal fluid of infertile patients with and without endometriosis. Fertil Steril 53(5):930–932. https://doi.org/10.1016/s0015-0282(16)53534-1

    Article  CAS  PubMed  Google Scholar 

  30. Priori R, Medda E, Conti F, Cassara EA, Sabbadini MG, Antonioli CM et al (2007) Risk factors for Sjogren’s syndrome: a case-control study. Clin Exp Rheumatol 25(3):378–384

    CAS  PubMed  Google Scholar 

  31. Marchand NE, Sparks JA, Tedeschi SK, Malspeis S, Costenbader KH, Karlson EW et al (2021) Abdominal obesity in comparison with general obesity and risk of developing rheumatoid arthritis in women. J Rheumatol 48(2):165–173. https://doi.org/10.3899/jrheum.200056

    Article  PubMed  Google Scholar 

  32. Servioli L, Maciel G, Nannini C, Crowson CS, Matteson EL, Cornec D et al (2019) Association of smoking and obesity on the risk of developing primary Sjögren syndrome: a population-based cohort study. J Rheumatol 46(7):727–730. https://doi.org/10.3899/jrheum.180481

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cruz-Bautista I, Almeda-Valdés P, López-Carrasco G, Astudillo M, Zamora-Legoff V, Manjarrez-Martínez I, et al. (2022) Total body water and sicca symptoms in primary Sjögren’s syndrome. Clin Exp Rheumatol. https://doi.org/10.55563/clinexprheumatol/4c9652

  34. Hemminki K, Liu X, Försti A, Sundquist J, Sundquist K, Ji J (2015) Subsequent type 2 diabetes in patients with autoimmune disease. Sci Rep 5:13871. https://doi.org/10.1038/srep13871

    Article  PubMed  PubMed Central  Google Scholar 

  35. SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J et al (2022) Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 18(1):23–42. https://doi.org/10.1038/s41574-021-00575-1

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Kim YS, Park SH (2021) Metformin as a treatment strategy for Sjögren’s syndrome. Int J Mol Sci 22(13). https://doi.org/10.3390/ijms22137231

  37. Kim JW, Kim SM, Park JS, Hwang SH, Choi J, Jung KA et al (2019) Metformin improves salivary gland inflammation and hypofunction in murine Sjögren’s syndrome. Arthritis Res Ther 21(1):136. https://doi.org/10.1186/s13075-019-1904-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandl T, Diaz S, Ekberg O, Hesselstrand R, Piitulainen E, Wollmer P et al (2012) Frequent development of chronic obstructive pulmonary disease in primary SS–results of a longitudinal follow-up. Rheumatology (Oxford) 51(5):941–946. https://doi.org/10.1093/rheumatology/ker409

    Article  Google Scholar 

  39. Yong WC, Sanguankeo A, Upala S (2019) Association between primary Sjogren’s syndrome, arterial stiffness, and subclinical atherosclerosis: a systematic review and meta-analysis. Clin Rheumatol 38(2):447–455. https://doi.org/10.1007/s10067-018-4265-1

    Article  PubMed  Google Scholar 

  40. Chang CS, Liao CH, Muo CH, Kao CH (2016) Increased risk of concurrent gastroesophageal reflux disease among patients with Sjögren’s syndrome: a nationwide population-based study. Eur J Intern Med 31:73–78. https://doi.org/10.1016/j.ejim.2016.01.014

    Article  PubMed  Google Scholar 

  41. Vasaitis L, Nordmark G, Theander E, Backlin C, Smedby KE, Askling J et al (2019) Comparison of patients with and without pre-existing lymphoma at diagnosis of primary Sjögren’s syndrome. Scand J Rheumatol 48(3):207–212. https://doi.org/10.1080/03009742.2018.1523456

    Article  CAS  PubMed  Google Scholar 

  42. Pasoto S, Augusto K, Alvarenga J, Takayama L, Oliveira R, Bonfa E et al (2016) Cortical bone density and thickness alterations by high-resolution peripheral quantitative computed tomography: association with vertebral fractures in primary Sjögren’s syndrome. Rheumatology (Oxford) 55(12):2200–2211

  43. Huang YT, Lu TH, Chou PL, Weng MY (2021) Diagnostic delay in patients with primary Sjögren's syndrome: a population-based cohort study in Taiwan. Healthcare (Basel) 9(3). https://doi.org/10.3390/healthcare9030363

  44. Gau SY, Leong PY, Lin CL, Tsou HK, Wei JC (2021) Higher risk for Sjögren’s syndrome in patients with fibromyalgia: a nationwide population-based cohort study. Front Immunol 12:640618. https://doi.org/10.3389/fimmu.2021.640618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson SA, Shouman K, Shelly S, Sandroni P, Berini SE, Dyck PJB et al (2021) Small fiber neuropathy incidence, prevalence, longitudinal impairments, and disability. Neurology 97(22):e2236–e2247. https://doi.org/10.1212/wnl.0000000000012894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Aleksander Stanic-Kostic for his expertise and intellectual insight.

Funding

The project described was supported by the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), grant UL1TR002373 and KL2TR002374. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara S. McCoy.

Ethics declarations

Ethics approval

According to the Declaration of Helsinki, all procedures were approved in advance by the MC Institutional Review Board (IRB-20–699) with a waiver of individual informed consent and HIPAA authorization due to the retrospective nature of this medical record study design.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 18 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, S.S., Hetzel, S., VanWormer, J.J. et al. Sex hormones, body mass index, and related comorbidities associated with developing Sjögren’s disease: a nested case–control study. Clin Rheumatol 41, 3065–3074 (2022). https://doi.org/10.1007/s10067-022-06226-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06226-8

Keywords

Navigation