Skip to main content

Advertisement

Log in

Abnormal expression of interleukin-6 is associated with epidermal alternations in localized scleroderma

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Localized scleroderma (LSc) is a disease characterized by the excessive deposition of collagen and thereby thickening of the dermis. In recent years, studies reported that LSc demonstrated compromised skin barrier related to the progression of the disease. However, human studies examining epidermis in scleroderma are still sparse and lack systematic research. This study aims to investigate the structural and functional changes in the LSc epidermis and further explore the underlying mechanisms, providing a new angle to treat LSc in the clinic.

Methods

A total of 136 skin sites, including lesion and non-lesion control, from 27 LSc patients were analyzed. Ultrasonic testing, trans-epidermal water loss (TEWL), and epidermal hydration were assessed to investigate the structural and functional alternations; correlations between these parameters were analyzed. To explore the underlying mechanism, skin-fibrosis mouse model and cellular model by bleomycin (BLM) were deployed.

Results

The epidermal thickness was markedly increased, with a significant decline of hydration (dryness) in the LSc lesion skin. Epidermal hydration presented a negative correlation with the thickness. TEWL was not altered. The mouse model validated these morphological changes in the epidermis and indicated that interleukin-6 (IL-6) was significantly elevated. Furthermore, cellular study demonstrated that increased phosphorylation of p38 in keratinocyte promoted the secretion of IL-6, stimulating cell proliferation.

Conclusion

This study characterized the epidermal alterations in LSc patients, suggesting that keratinocyte-derived abnormal IL-6 secretion can lead to the thickening of the epidermis, promoting dryness. The topical application of moisturizer may largely relieve dryness and related pruritus, thus improve the quality of life in LSc patients.

Key Points

• Epidermal thickness was increased in LSc lesion skin with declined hydration level.

• Skin fibrosis mouse model validated the epidermal alteration in LSc patient.

• p38-dependent IL-6 overexpression in keratinocyte result in epidermal thickening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Distler O, Cozzio A (2016) Systemic sclerosis and localized scleroderma–current concepts and novel targets for therapy. Semin Immunopathol 38:87–95. https://doi.org/10.1007/s00281-015-0551-z

    Article  CAS  PubMed  Google Scholar 

  2. Laxer RM, Zulian F (2006) Localized scleroderma. Curr Opin Rheumatol 18:606–613. https://doi.org/10.1097/01.bor.0000245727.40630.c3

    Article  PubMed  Google Scholar 

  3. Kreuter A, Hyun J, Skrygan M, Sommer A, Bastian A, Altmeyer P et al (2006) Ultraviolet al-induced downregulation of human beta-defensins and interleukin-6 and interleukin-8 correlates with clinical improvement in localized scleroderma. Br J Dermatol 155:600–607. https://doi.org/10.1111/j.1365-2133.2006.07391.x

    Article  CAS  PubMed  Google Scholar 

  4. Alten R, Maleitzke T (2013) Tocilizumab: a novel humanized anti-interleukin 6 (IL-6) receptor antibody for the treatment of patients with non-RA systemic, inflammatory rheumatic diseases. Ann Med 45:357–363. https://doi.org/10.3109/07853890.2013.771986

    Article  CAS  PubMed  Google Scholar 

  5. Careta MF, Romiti R (2015) Localized scleroderma: clinical spectrum and therapeutic update. An Bras Dermatol 90:62–73. https://doi.org/10.1590/abd1806-4841.20152890

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim MW, Park JT, Kim JH, Koh SJ, Yoon HS, Cho S et al (2017) Periostin in mature stage localized scleroderma. Ann Dermatol 29:268–275. https://doi.org/10.5021/ad.2017.29.3.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torok KS, Li SC, Jacobe HM, Taber SF, Stevens AM, Zulian F, et al (2019) Immunopathogenesis of pediatric localized scleroderma. Front Immunol 10.https://doi.org/10.3389/fimmu.2019.00908

  8. Wolska-Gawron K, Bartosinska J, Krasowska D (2020) MicroRNA in localized scleroderma: a review of literature. Arch Dermatol Res 312:317–324. https://doi.org/10.1007/s00403-019-01991-0

    Article  CAS  PubMed  Google Scholar 

  9. Ihn H, Sato S, Fujimoto M, Kikuchi K, Takehara K (1995) Demonstration of interleukin-2, interleukin-4 and interleukin-6 in sera from patients with localized scleroderma. Arch Dermatol Res 287:193–197. https://doi.org/10.1007/bf01262331

    Article  CAS  PubMed  Google Scholar 

  10. Klimas NK, Shedd AD, Bernstein IH, Jacobe H (2015) Health-related quality of life in morphoea. Br J Dermatol 172:1329–1337. https://doi.org/10.1111/bjd.13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Minato H, Taki R, Miyachi Y, Utani A (2009) Symmetrical pigmented sclerosis enclosed by pruritic erythema: a new variant of morphoea? Br J Dermatol 161:703–706. https://doi.org/10.1111/j.1365-2133.2009.09360.x

    Article  CAS  PubMed  Google Scholar 

  12. Das S, Bernstein I, Jacobe H (2014) Correlates of self-reported quality of life in adults and children with morphea. J Am Acad Dermatol 70:904–910. https://doi.org/10.1016/j.jaad.2013.11.037

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ďurčanská V, Jedličková H, Vašků V (2016) Measurement of transepidermal water loss in localized scleroderma. Dermatol Ther 29:177–180. https://doi.org/10.1111/dth.12339

    Article  PubMed  Google Scholar 

  14. Nikitorowicz-Buniak J, Shiwen X, Denton CP, Abraham D, Stratton R (2014) Abnormally differentiating keratinocytes in the epidermis of systemic sclerosis patients show enhanced secretion of CCN2 and S100A9. J Invest Dermatol 134:2693–2702. https://doi.org/10.1038/jid.2014.253

    Article  CAS  PubMed  Google Scholar 

  15. Assassi S, Swindell WR, Wu M, Tan FD, Khanna D, Furst DE et al (2015) Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ) 67:3016–3026. https://doi.org/10.1002/art.39289

    Article  CAS  Google Scholar 

  16. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R et al (2017) Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med 214:1129–1151. https://doi.org/10.1084/jem.20160247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peterson LS, Nelson AM, Su WP (1995) Classification of morphea (localized scleroderma). Mayo Clin Proc 70:1068–1076. https://doi.org/10.4065/70.11.1068

    Article  CAS  PubMed  Google Scholar 

  18. Moore TL, Lunt M, McManus B, Anderson ME, Herrick AL (2003) Seventeen-point dermal ultrasound scoring system–a reliable measure of skin thickness in patients with systemic sclerosis. Rheumatology (Oxford) 42:1559–1563. https://doi.org/10.1093/rheumatology/keg435

    Article  CAS  Google Scholar 

  19. Nikam VN, Monteiro RC, Dandakeri S, Bhat RM (2019) Transepidermal water loss in psoriasis: a case-control study. Indian Dermatol Online J 10:267–271. https://doi.org/10.4103/idoj.IDOJ_180_18

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alanen E, Nuutinen J, Nicklén K, Lahtinen T, Mönkkönen J (2004) Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer. Skin Res Technol 10:32–37. https://doi.org/10.1111/j.1600-0846.2004.00050.x

    Article  PubMed  Google Scholar 

  21. Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T et al (2013) The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol 190:3905–3915. https://doi.org/10.4049/jimmunol.1200822

    Article  CAS  PubMed  Google Scholar 

  22. Yan Q, Chen J, Li W, Bao C, Fu Q (2016) Targeting miR-155 to treat experimental scleroderma. Sci Rep 6:20314. https://doi.org/10.1038/srep20314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  24. Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM (2007) Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol 179:5483–5492. https://doi.org/10.4049/jimmunol.179.8.5483

    Article  CAS  PubMed  Google Scholar 

  25. Turner NA, Blythe NM (2019) Cardiac fibroblast p38 MAPK: a critical regulator of myocardial remodeling. J Cardiovasc Dev Dis 6.https://doi.org/10.3390/jcdd6030027

  26. Morley SM, Gaylarde PM, Sarkany I (1985) Epidermal thickness in systemic sclerosis and morphoea. Clin Exp Dermatol 10:51–57. https://doi.org/10.1111/j.1365-2230.1985.tb02552.x

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberger C, Solovan C, Rosenberger AD, Jinping L, Treudler R, Frei U et al (2007) Upregulation of hypoxia-inducible factors in normal and psoriatic skin. J Invest Dermatol 127:2445–2452. https://doi.org/10.1038/sj.jid.5700874

    Article  CAS  PubMed  Google Scholar 

  28. Toyama S, Sato S, Asano Y (2019) Localized scleroderma manifesting with skin lesions associated with mechanical stress. Eur J Dermatol: EJD 29:439–440. https://doi.org/10.1684/ejd.2019.3601

    Article  PubMed  Google Scholar 

  29. Romero LI, Pincus SH (1992) In situ localization of interleukin-6 in normal skin and atrophic cutaneous disease. Int Arch Allergy Immunol 99:44–49. https://doi.org/10.1159/000236334

    Article  CAS  PubMed  Google Scholar 

  30. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT et al (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86:6367–6371. https://doi.org/10.1073/pnas.86.16.6367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM (2020) The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 8. https://doi.org/10.3390/biomedicines8050101

  32. Taniguchi K, Arima K, Masuoka M, Ohta S, Shiraishi H, Ontsuka K et al (2014) Periostin controls keratinocyte proliferation and differentiation by interacting with the paracrine IL-1alpha/IL-6 loop. J Invest Dermatol 134:1295–1304. https://doi.org/10.1038/jid.2013.500

    Article  CAS  PubMed  Google Scholar 

  33. Works MG, Yin F, Yin CC, Yiu Y, Shew K, Tran TT, et al (2014) Inhibition of TYK2 and JAK1 ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting IL-22 and the IL-23/IL-17 axis. J Immunol (Baltimore, Md : 1950) 193:3278–3287. https://doi.org/10.4049/jimmunol.1400205

  34. Nagaoka T, Sato S, Hasegawa M, Ihn H, Takehara K (2000) Serum levels of soluble interleukin 6 receptor and soluble gp130 are elevated in patients with localized scleroderma. J Rheumatol 27:1917–1921

    CAS  PubMed  Google Scholar 

  35. Denton CP, Ong VH, Xu S, Chen-Harris H, Modrusan Z, Lafyatis R et al (2018) Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann Rheum Dis 77:1362–1371. https://doi.org/10.1136/annrheumdis-2018-213031

    Article  CAS  PubMed  Google Scholar 

  36. Khanna D, Lin CJF, Furst DE, Goldin J, Kim G, Kuwana M et al (2020) Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 8:963–974. https://doi.org/10.1016/s2213-2600(20)30318-0

    Article  CAS  PubMed  Google Scholar 

  37. Brown M, O’Reilly S (2019) The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 195:310–321. https://doi.org/10.1111/cei.13238

    Article  CAS  PubMed  Google Scholar 

  38. Heerfordt IM, Nissen CV, Poulsen T, Philipsen PA, Wulf HC (2016) Thickness of Actinic keratosis does not predict dysplasia severity or P53 expression. Sci Rep 6:33952. https://doi.org/10.1038/srep33952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lichterfeld-Kottner A, Lahmann N, Blume-Peytavi U, Mueller-Werdan U, Kottner J (2018) Dry skin in home care: a representative prevalence study. J Tissue Viability 27:226–231. https://doi.org/10.1016/j.jtv.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  40. Valdes-Rodriguez R, Mollanazar NK, Gonzalez-Muro J, Nattkemper L, Torres-Alvarez B, Lopez-Esqueda FJ et al (2015) Itch prevalence and characteristics in a Hispanic geriatric population: a comprehensive study using a standardized itch questionnaire. Acta Derm Venereol 95:417–421. https://doi.org/10.2340/00015555-1968

    Article  PubMed  Google Scholar 

  41. Therene C, Brenaut E, Sonbol H, Pasquier E, Saraux A, Devauchelle V et al (2017) Itch and systemic sclerosis: frequency, clinical characteristics and consequences. Br J Dermatol 176:1392–1393. https://doi.org/10.1111/bjd.14998

    Article  CAS  PubMed  Google Scholar 

  42. Misery L, Brenaut E, Le Garrec R, Abasq C, Genestet S, Marcorelles P et al (2014) Neuropathic pruritus. Nat Rev Neurol 10:408–416. https://doi.org/10.1038/nrneurol.2014.99

    Article  PubMed  Google Scholar 

  43. Frech T, Novak K, Revelo MP, Murtaugh M, Markewitz B, Hatton N et al (2011) Low-dose naltrexone for pruritus in systemic sclerosis. Int J Rheumatol 2011:804296. https://doi.org/10.1155/2011/804296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81703097), China Postdoctoral Science Foundation (2017M621365), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and CAMS Innovation Fund for Medical Sciences (2019-I2M-5–066).

Author information

Authors and Affiliations

Authors

Contributions

JX and XZ designed this study; XZ, QZ, XK, LZ, and RZ assessed skin morphology and physiology; XZ performed the animal and cellular experiments; LJ performed the RNA-seq analysis; YT supervised skin physiology assessment; JX and JW supervised the whole project; XZ and JX drafted the manuscript and substantially revised by JW; QL and WW for the intensive scientific discussion and suggestions.

Corresponding authors

Correspondence to Jiucun Wang or Jingjing Xia.

Ethics declarations

Ethics approval

This research was conducted ethically in accordance with the World Medical Association Declaration of Helsinki. Study procedures were reviewed and approved by the Ethics Committee of School of Life Sciences, Fudan University (2017–619). Signed informed consent was obtained from all participants. Animal experiments were performed following the general guidelines, and the protocol was approved by the Animal Care and Use Committee of the School of Life sciences at Fudan University, China.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Jiang, L., Zhong, Q. et al. Abnormal expression of interleukin-6 is associated with epidermal alternations in localized scleroderma. Clin Rheumatol 41, 2179–2187 (2022). https://doi.org/10.1007/s10067-022-06127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06127-w

Keywords

Navigation