Skip to main content

Advertisement

Log in

Coexpression network analysis coupled with connectivity map database mining reveals novel genetic biomarkers and potential therapeutic drugs for polymyositis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Polymyositis (PM) is a chronic autoimmune connective tissue disease whose pathogenic mechanisms are unclear. This study aimed to identify the main genes and functionally enriched pathways involved in PM using weighted gene coexpression network analysis (WGCNA).

Methods

To identify the candidate genes of PM, microarray datasets GSE128470, GSE3112, GSE39454 and GSE125977 were obtained from the Gene Expression Omnibus database. The gene network of GSE128470 was constructed, and WGCNA was used to divide genes into different modules. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were applied to the most PM-related modules. The datasets were used to verify the expression profile and diagnostic capabilities of the hub genes. Additionally, gene set enrichment analysis (GSEA) was carried out. Moreover, gene signatures were then used as a search query to explore the connectivity map (CMap).

Results

A weighted gene coexpression network was constructed, and the genes were divided into 66 modules. The enriched functions and candidate pathway modules included interferon-γ, type I interferon, cellular response to interferon-γ, neutrophil activation, neutrophil degranulation, neutrophil-mediated immunity and neutrophil activation involved in the immune response. A total of 22 hub genes were identified. The Mann–Whitney U test was performed on these 22 genes using the three datasets of muscle samples and one dataset of whole blood samples, and two genes significantly differentially expressed in all datasets were obtained: VCAM1 and LY96. Receiver operating characteristic curve analysis determined that VCAM1 and LY96 gene expression can distinguish PM from healthy controls (the area under the curve [AUC] was greater than 0.75). Logistic regression analysis was performed on the combination of LY96 and VCAM1. The accuracy, sensitivity, specificity, and AUC of the combination reached 1.0. GSEA of VCAM1 and LY96 revealed their relation to ‘inflammatory response’, ‘TNF-α signalling via NF-κB’, ‘complement’ and ‘myogenesis’. CMap research revealed a few compounds with the potential to counteract the effects of the dysregulated molecular signature in PM.

Conclusions

We used WGCNA to observe all aspects of PM, which helped to elucidate the molecular mechanisms of PM onset and progression and provide candidate targets for the diagnosis and treatment of PM.

Key Points

• Four microarray datasets were analysed in patients with polymyositis and healthy controls, and VCAM1 and LY96 were significant genes in all datasets.

• GSEA of VCAM1 and LY96 revealed that they were mainly related to ‘inflammatory response’, ‘TNF-α signalling via NF-κB’, ‘complement’ and ‘myogenesis’.

• CMap found a few compounds such as dimethyloxalylglycine and HNMPA-(AM)3 with the potential to counteract the effects of the dysregulated molecular signature in PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362:971–982

    Article  CAS  PubMed  Google Scholar 

  2. Dobloug C, Garen T, Bitter H, Stjärne J, Stenseth G, Grøvle L et al (2015) Prevalence and clinical characteristics of adult polymyositis and dermatomyositis; data from a large and unselected Norwegian cohort. Ann Rheum Dis 74:1551–1556

    Article  PubMed  Google Scholar 

  3. Bernatsky S, Joseph L, Pineau C, Bélisle P, Boivin J, Banerjee D et al (2009) Estimating the prevalence of polymyositis and dermatomyositis from administrative data: age, sex and regional differences. Ann Rheum Dis 68:1192–1196

    Article  CAS  PubMed  Google Scholar 

  4. Venalis P, Lundberg IE (2014) Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology 53:397–405

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Wang Q, Wu Z, Li Y, Li P, Sun F et al (2014) Genetic association study of TNFAIP3, IFIH1, IRF5 polymorphisms with polymyositis/dermatomyositis in Chinese Han population. PLoS One 9:e110044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Heckmann J, Pillay K, Hearn A, Kenyon C (2010) Polymyositis in African HIV-infected subjects. Neuromuscular Disord 20:735–739

    Article  CAS  Google Scholar 

  7. Sugiura T, Kawaguchi Y, Goto K, Hayashi Y, Tsuburaya R, Furuya T et al (2012) Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann Rheum Dis 71:1646–1650

    Article  CAS  PubMed  Google Scholar 

  8. Kohsaka H, Mimori T, Kanda T, Shimizu J, Sunada Y, Fujimoto M et al (2019) Treatment consensus for management of polymyositis and dermatomyositis among rheumatologists, neurologists and dermatologists. Mod Rheumatol 29:1–19

    Article  PubMed  Google Scholar 

  9. Vlekkert J, Hoogendijk J, De Haan R, Algra A, van der Tweel I, Van Der Pol W et al (2010) Oral dexamethasone pulse therapy versus daily prednisolone in sub-acute onset myositis, a randomised clinical trial. Neuromuscular Disord 20:382–389

    Article  Google Scholar 

  10. Tjärnlund A, Tang Q, Wick C, Dastmalchi M, Mann H, Studýnková JT et al (2018) Abatacept in the treatment of adult dermatomyositis and polymyositis: a randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis 77:55–62

    Article  PubMed  CAS  Google Scholar 

  11. Fasano S, Gordon P, Hajji R, Loyo E, Isenberg DA (2017) Rituximab in the treatment of inflammatory myopathies: a review. Rheumatology 56:26–36

    Article  CAS  PubMed  Google Scholar 

  12. Babaoglu H, Varan O, Atas N, Satis H, Salman R, Tufan A (2019) Tofacitinib for the treatment of refractory polymyositis. J Clin Rheumatol 25:e141–e142

    PubMed  Google Scholar 

  13. Kawasumi H, Gono T, Kawaguchi Y, Kuwana M, Kaneko H, Katsumata Y et al (2016) Clinical manifestations and myositis-specific autoantibodies associated with physical dysfunction after treatment in polymyositis and dermatomyositis: an observational study of physical dysfunction with myositis in Japan. BioMed Res Int 2016:9163201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sezin T, Vorobyev A, Sadik CD, Zillikens D, Gupta Y, Ludwig R (2018) Gene expression analysis reveals novel shared gene signatures and candidate molecular mechanisms between pemphigus and systemic lupus erythematosus in CD4+ T cells. Front Immunol 8:1992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wickham R (2016) ggplot2: elegant graphics for data analysis. springer

  17. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:S11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:1–8

    Article  Google Scholar 

  20. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walter W, Sánchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31:2912–2914

    Article  CAS  PubMed  Google Scholar 

  22. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  23. Musa A, Ghoraie LS, Zhang S-D, Glazko G, Yli-Harja O, Dehmer M et al (2018) A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 19:506–523

    CAS  PubMed  Google Scholar 

  24. Shen H, Xia L, Lu J (2012) Pilot study of interleukin-27 in pathogenesis of dermatomyositis and polymyositis: associated with interstitial lung diseases. Cytokine 60:334–337

    Article  CAS  PubMed  Google Scholar 

  25. Greenberg SA (2010) Type 1 interferons and myositis. Arthritis Res Ther 12:S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL et al (2007) Type I interferon–inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheumatol 56:3784–3792

    Article  CAS  Google Scholar 

  27. Seto N, Torres-Ruiz JJ, Carmona-Rivera C, Pinal-Fernandez I, Pak K, Purmalek MM, et al (2020) Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 5:e134189

    Article  PubMed Central  Google Scholar 

  28. Koppula BR, Pipavath S, Lewis DH (2009) Epstein-Barr virus (EBV) associated lymphoepithelioma-like thymic carcinoma associated with paraneoplastic syndrome of polymyositis: a rare tumor with rare association. Clin Nucl Med 34:686–688

    Article  PubMed  Google Scholar 

  29. Nojima T, Hirakata M, Sato S, Fujii T, Suwa A, Mimori T et al (2000) A case of polymyositis associated with hepatitis B infection. Clin Exp Rheumatol 18:86–88

    CAS  PubMed  Google Scholar 

  30. Wong MH, Sockalingam S, Zain A (2011) Polymyositis associated with hepatitis B: management with entacavir and prednisolone. Int J Rheum Dise 14:e38–e41

    Article  Google Scholar 

  31. Sallum AM, Kiss MH, Silva CA, Wakamatsu A, Vianna MA, Sachetti S et al (2006) Difference in adhesion molecule expression (ICAM-1 and VCAM-1) in juvenile and adult dermatomyositis, polymyositis and inclusion body myositis. Autoimmun Rev 5:93–100

    Article  CAS  PubMed  Google Scholar 

  32. Yan W, Chen C, Chen H (2017) Estrogen downregulates miR-21 expression and induces inflammatory infiltration of macrophages in polymyositis: role of CXCL10. Mol Neurobiol 54:1631–1641

    Article  CAS  PubMed  Google Scholar 

  33. Hamann PD, Roux BT, Heward JA, Love S, McHugh NJ, Jones SW et al (2017) Transcriptional profiling identifies differential expression of long non-coding RNAs in Jo-1 associated and inclusion body myositis. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  34. Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L (2019) RNA-Sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skelet Muscle 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jesse T, LaChance R, Iademarco M, Dean D (1998) Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1. J Cell Biol 140:1265–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malecova B, Gatto S, Etxaniz U, Passafaro M, Cortez A, Nicoletti C et al (2018) Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat Commun 9:3670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S et al (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    Article  CAS  PubMed  Google Scholar 

  38. Scirocco A, Matarrese P, Petitta C, Cicenia A, Ascione B, Mannironi C et al (2010) Exposure of toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Physiol 223:442–450

    CAS  PubMed  Google Scholar 

  39. Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L et al (2017) Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 8:13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang Q, Wang J, Zhang Y, Wang L, Li W, Han J et al (2018) Inhibition of myeloid differentiation factor-2 attenuates obesity-induced cardiomyopathy and fibrosis. Biochim Biophys Acta Mol Basis Dis 1864:252–262

    Article  CAS  PubMed  Google Scholar 

  41. Kim G, Cho M, Park Y, Yoo W, Kim J, Oh H et al (2010) Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis. Clin Rheumatol 29:273–279

    Article  PubMed  Google Scholar 

  42. Zhang H, He F, Shi M, Wang W, Tian X, Kang J et al (2017) Toll-like receptor 4-myeloid differentiation primary response gene 88 pathway is involved in the inflammatory development of polymyositis by mediating interferon-γ and interleukin-17A in humans and experimental autoimmune myositis mouse model. Front Neurol 8:132

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen M, Daha MR, Kallenberg CG (2010) The complement system in systemic autoimmune disease. J Autoimmun 34:J276–J286

    Article  CAS  PubMed  Google Scholar 

  44. Li L, Chen J, Chen S, Liu C, Zhang F, Li Y (2019) Serum C1q concentration positively correlates with erythrocyte sedimentation rate in polymyositis/dermatomyositis. Ann Clin Lab Sci 49:237–241

    CAS  PubMed  Google Scholar 

  45. Kuru S, Inukai A, Liang Y, Doyu M, Takano A, Sobue G (2000) Tumor necrosis factor-α expression in muscles of polymyositis and dermatomyositis. Acta Neuropathol 99:585–588

    Article  CAS  PubMed  Google Scholar 

  46. Brunasso AMG, Aberer W, Massone C (2014) New onset of dermatomyositis/polymyositis during anti-TNF-α therapies: a systematic literature review. Scientific World J 2014:179180

    Article  CAS  Google Scholar 

  47. Schiffenbauer A, Garg M, Castro C, Pokrovnichka A, Joe G, Shrader J, et al. (2018) A randomized, double-blind, placebo-controlled trial of infliximab in refractory polymyositis and dermatomyositis. Semin Arthritis Rheu. Elsevier

  48. Fischer HJ, Sie C, Schumann E, Witte A-K, Dressel R, van den Brandt J et al (2017) The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol 198:1910–1920

    Article  CAS  PubMed  Google Scholar 

  49. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG et al (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165

    Article  CAS  PubMed  Google Scholar 

  50. Hams E, Saunders SP, Cummins EP, O’Connor A, Tambuwala MT, Gallagher WM et al (2011) The hydroxylase inhibitor DMOG attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B-1 cells. Shock 36:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2020YFA0710800), Key Program of National Natural Science Foundation of China (grant no. 81930043) and Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (ZKX18011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Chen or Lingyun Sun.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2.59 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhu, R., Li, J. et al. Coexpression network analysis coupled with connectivity map database mining reveals novel genetic biomarkers and potential therapeutic drugs for polymyositis. Clin Rheumatol 41, 1719–1730 (2022). https://doi.org/10.1007/s10067-021-06035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-06035-5

Keywords

Navigation