Skip to main content

Advertisement

Log in

A CD40 variant is associated with systemic bone loss among patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and variants of genes playing a critical role in both immune response and bone homeostasis among patients with RA.

Methods

IRAK-1 rs3027898, IRAK-2 rs3844283, IRAK-2 rs708035, IFIH1 rs1990760, CD40 rs48104850, TNFAIP3 rs2230926, and miR146-a rs2910164 were genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA).

Results

Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. Among all the SNPs assessed, only CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23–0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR = 0.31, 95% CI = 0.16–0.59, p = 3.84 × 10−4). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788 ± 0.136 versus 0.826 ± 0.146 g/cm2, p = 0.001). IRAK-1 rs3027898, IRAK-2 rs3844283, rs708035, IFIH rs1990760, TNFAIP3 rs2230926, and miR146-a rs2910164 were not found to be associated with SBL.

Conclusion

This study for the first time ever demonstrated an association between a CD40 genetic variant and SBL among patients with RA.

Key Points

• CD40 rs4810485 GG genotype is associated with decreased BMD among patients with RA.

• CD40 rs4810485 might serve as a genetic marker for SBL in RA.

• CD40 genetic variations might be integrated in future development of more effective therapeutic interventions for prevention of SBL in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamen DL, Alele JD (2010) Skeletal manifestations of systemic autoimmune diseases. Curr Opin Endocrinol Diabetes Obes 17:540–545

    Article  CAS  PubMed  Google Scholar 

  2. Shim JH, Stavre Z, Gravallese EM (2018) Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int 102:533–546

    Article  CAS  PubMed  Google Scholar 

  3. Viatte SA, Barton A (2017) Genetics of rheumatoid arthritis susceptibility, severity, and treatment response. Semin Immunopathol 39:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li H, Cuartas E, Cui W et al (2005) IL-1 1 receptor-associated kinase M is a central regulator of osteoclast differentiation and activation. J Exp Med 201:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaker OG, El Boghdady NA, El Sayed AE (2018) Association of MiRNA-146a, MiRNA499, IRAK1 and PADI4 polymorphisms with rheumatoid arthritis in Egyptian population. Cell Physiol Biochem 46:2239–2249

    Article  CAS  PubMed  Google Scholar 

  6. Hassine HB, Sghiri R, Chabchoub E et al (2018) IRAK2 is associated with susceptibility to rheumatoid arthritis. Clin Rheumatol 37:927–933

    Article  PubMed  Google Scholar 

  7. Martínez A, Varadé J, Lamas JR (2008) Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis. Ann Rheum Dis 67:137–138

    Article  PubMed  Google Scholar 

  8. Soda N, Sakai N, Kato H et al (2019) Singleton-Merten syndrome-like skeletal abnormalities in mice with constitutively activated MDA5. J Immunol 203:1356–1368

    Article  CAS  PubMed  Google Scholar 

  9. Westra HJ, Martínez-Bonet M, Onengut-Gumuscu S et al (2018) Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet 50:1366–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sokhi UK, Liber MP, Frye L et al (2018) Dissection and function of autoimmunity associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun 9:658. https://doi.org/10.1038/s41467-018-03081-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee EG, Boone DL, Chai S (2000) Failure to regulate TNF-induced NF-kB and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elgueta R, Benson MJ, de Vries VC et al (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229:152–172

    Article  CAS  PubMed  Google Scholar 

  13. Plant D, Flynn E, Mbarek H et al (2010) Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann Rheum Dis 69:1548–1553

    Article  CAS  PubMed  Google Scholar 

  14. Berner B, Wolf G, Hummel KM et al (2000) (2000) Increased expression of CD40 ligand (CD154) on CD4+ T cells as a marker of disease activity in rheumatoid arthritis. Ann Rheum Dis 59:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Toraldo G, Li A et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez-Granados E, Temmerman ST, Wu L et al (2007) (2007) Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc Natl Acad Sci U S A 104:5056–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizoguchi F, Izu Y, Hayata T et al (2010) Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109:866–875

    CAS  PubMed  Google Scholar 

  18. Hu Q, Li B, She R et al (2019) Association of polymorphisms of miR-146a rs2910164 locus with clinical features of rheumatoid arthritis. Zhonghua Yi Xue Yi ChuanXue Za Zhi 36:505–507

    Google Scholar 

  19. Hassine HB, Boumiza A, Sghiri R et al (2017) Micro RNA-146a But Not IRAK1 is Associated with Rheumatoid Arthritis in the Tunisian Population. Genet Test Mol Biomarkers 21:92–99

    Article  PubMed  CAS  Google Scholar 

  20. Aletaha D, Neogi T, Silman AJ et al (2010) (2010) Rheumatoid arthritis classification criteria: an American College of Rheumatology/ European League against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581

    Article  PubMed  Google Scholar 

  21. Boumiza A, Zemni R, Sghiri R et al (2020) IRAK2 is associated with systemic lupus erythematosus risk. Clin Rheumatol 39:419–424

    Article  PubMed  Google Scholar 

  22. Haugeberg G, Uhlig T, Falch JA et al (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43:522–530

    Article  CAS  PubMed  Google Scholar 

  23. Lodder MC, de Jong Z, Kostense PJ et al (2004) Bone mineral density in patients with rheumatoid arthritis: relation between disease severity and low bone mineral density. Ann Rheum Dis 63:1576–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group Osteoporos Int 4:368–381

    Article  CAS  Google Scholar 

  25. Ahuja SS, Zhao S, Bellido T et al (2003) CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 144:1761–1769

    Article  CAS  PubMed  Google Scholar 

  26. Roser-Page S, Vikulina T, Yu K et al (2018) Neutralization of CD40 ligand costimulation promotes bone formation and accretion of vertebral bone mass in mice. Rheumatology (Oxford) 57:1105–1114

    Article  CAS  Google Scholar 

  27. Li G, Diogo D, Wu D (2013) Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40signaling pathway. PLoS Genet 9:e1003487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vazgiourakis VM, Zervou MI, Choulaki C et al (2011) A common SNP in the CD40 region is associated with systemic lupus erythematosus and correlates with altered CD40 expression: implications for the pathogenesis. Ann Rheum Dis 70:2184–2190

    Article  CAS  PubMed  Google Scholar 

  29. Liu MF, Chao SC, Wang CR et al (2001) Expression of CD40 and CD40 ligand among cell populations within rheumatoid synovial compartment. Autoimmunity 34:107–113

    Article  CAS  PubMed  Google Scholar 

  30. Harigai M, Hara M, Nakazawa S et al (1999) Ligation of CD40 induced tumor necrosis factor α in rheumatoid arthritis: a novel mechanism of activation of synoviocytes. J Rheumatol 26:1035–1043

    CAS  PubMed  Google Scholar 

  31. Wei S, Kitaura H, Zhou P et al (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yellin MJ, Winikoff S, Fortune SM (1995) Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation. J Leukoc Biol 58:209–216

    Article  CAS  PubMed  Google Scholar 

  33. Lee HY, Jeon HS, Song EK et al (2006) CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum 54:1747–1758

    Article  CAS  PubMed  Google Scholar 

  34. Ota Y, Niiro H, Ota S et al (2016) Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 16(18):67. https://doi.org/10.1186/s13075-016-0957-6

    Article  CAS  Google Scholar 

  35. Boumans MJ, Thurlings RM, Yeo L et al (2012) Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis 71:108–113

    Article  CAS  PubMed  Google Scholar 

  36. Meednu N, Zhang H, Owen T et al (2016) Production of RANKL by Memory B Cells:A Link Between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis Rheumatol 68:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun W, Meednu N, Rosenberg A et al (2018) B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat Commun 9:5127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Orsolini G, Caimmi C, Viapiana O et al (2017) Titer-Dependent effect of anti-citrullinated protein antibodies on systemic bone mass in rheumatoid arthritis patients. Calcif Tissue Int 101:17–23

    Article  CAS  PubMed  Google Scholar 

  39. Harre U, Georgess D, Bang et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng TT, Yu SF, Su FM et al (2018) Anti-CCP-positive patients with RA have a higher 10-year probability of fracture evaluated by FRAX(R): a registry study of RA with osteoporosis/fracture. Arthritis Res Ther 20:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guler H, Turhanoglu AD, Ozer B et al (2008) The relationship between anti-cyclic citrullinated peptide and bone mineral density and radiographic damage in patients with rheumatoid arthritis. Scand J Rheumatol 37:337–342

    Article  CAS  PubMed  Google Scholar 

  42. Onal M, Xiong J, Chen X et al (2012) Receptor activator of nuclear factor kB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem 287:29851–29860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hassine HB, Zemni R, Nacef IB et al (2019) A TRAF6 genetic variant is associated with low bone mineral density in rheumatoid arthritis. Clin Rheumatol 38:1067–1074

    Article  PubMed  Google Scholar 

  44. Albach FN, Wagner F, Hüser A et al (2018) Safety, pharmacokinetics and pharmacodynamics of single rising doses of BI 655064, an antagonistic anti-CD40 antibody in healthy subjects: a potential novel treatment for autoimmune diseases. Eur J Clin Pharmacol 74:161–169

    Article  CAS  PubMed  Google Scholar 

  45. Ishida R, Emi M, Ezura Y et al (2003) Association of a haplotype (196Phe/532Ser) in the interleukin-1-receptor-associated kinase (IRAK1) gene with low radial bone mineral density in two independent populations. J Bone Miner Res 18:419–423

    Article  CAS  PubMed  Google Scholar 

  46. Amarasekara DS, Yun H, Kim S et al (2018) regulation of osteoclast differentiation by cytokine networks. Immune Netw 18:e8. https://doi.org/10.4110/in.2018.18.e8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gorman JA, Hundhausen C, Errett JS et al (2017) The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat Immunol 18:744–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin YJ, Zhang ZL, Yu LY (2006) A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis. Acta Pharmacol Sin 27:1231–1237

    Article  CAS  PubMed  Google Scholar 

  49. Nakasa T, Shibuya H, Nagata Y et al (2011) (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheumatol 63:1582–1590

    Article  CAS  Google Scholar 

  50. Ammari M, Presumey J, Ponsolles C et al (2018) (2018) Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics 8:5972–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahn TK, Kim JO, Kumar H et al (2018) Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. J Orthop Res 36:244–253

    CAS  PubMed  Google Scholar 

  52. Zhang B, Naomi Nakamura B, Perlman A et al (2018) Identification of functional missense single-nucleotide polymorphisms in TNFAIP3 in a predominantly Hispanic population. J Clin Transl Sci 2:350–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the college of Medicine Research center, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Sghiri.

Ethics declarations

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rim Sghiri and Hana Benhassine are first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sghiri, R., Benhassine, H., Baccouche, K. et al. A CD40 variant is associated with systemic bone loss among patients with rheumatoid arthritis. Clin Rheumatol 41, 1851–1858 (2022). https://doi.org/10.1007/s10067-021-05998-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05998-9

Keywords

Navigation