Skip to main content
Log in

First trimester combined screening test for aneuploidies in anti-Ro carriers pregnant women

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Anti-Ro/SSA and anti-La/SSB antibodies are associated with neonatal lupus and congenital heart block. Controversial results regarding perinatal outcomes are found and less is known about aneuploidy screening. The hypothesis is that the presence of anti-Ro and/or anti-La antibodies influences the levels of PAPP-A and ß-HCG, thus interfering in the calculation of risk of aneuploidies.

Material and methods

Fifty-five anti-Ro/SSA positive pregnant women were included. The demographic characteristics and laboratory variables were studied. Data concerning chromosomopaties screening were also recorded.

Results

PAPP-A and β-HCG levels were calculated (as well as NT and CRL) and compared with a healthy cohort of 12971 pregnant women. PAPP-A levels in mg/mL were lower significatively. In anti-La/SS-B cohort, significant differences were found in PAPP-A in mg/mL and in MoM. Combined risks for Down syndrome (DS) in both groups were higher but the differences were due to age.

Conclusions

Serum levels of PAPP-A were significative lower but not confirmed when adjusted to MoM. This will have to be confirmed in studies with a larger number of patients and to check whether there is an impact in the calculation of DS risk or not. They could represent a group of pregnant women with significantly a higher risk of adverse perinatal outcome.

Key Points

Pregnant patients with anti-Ro/SS-A ant/or anti-La/SS-B antibodies have low PAPP-A levels compared with pregnant women without antibodies.

PAPP-A levels are used in obstetrics for aneuploidies screening in the first trimester, so in these patients, there could be more false positive screening.

In these findings are verified in trials with a larger number of patients, a correction variable would have to be applied for the aneuploidies screening calculation.

Also, low PAPP-A levels are correlated with poor placentation, that is to say, more risk of miscarriages, small fetus for gestational age, and preeclampsia. This is another topic to take into consideration in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satoh M, Chan EK, Ho LA et al (2012) Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum 64:2319–2327

    Article  Google Scholar 

  2. Bielsa Masdeu AM (2010) Autoanticuerpos. Guía rápida, 2nd edn. Ana María Bielsa Masdeu, Madrid

    Google Scholar 

  3. Guo YP, Wang CG, Liu X, Huang YQ, Guo DL, Jing XZ, Yuan CG, Yang S, Liu JM, Han MS, Li HX (2014) The prevalence of antinuclear antibodies in the general population of china: a cross-sectional study. Curr Ther Res Clin Exp 76:116–119

    Article  CAS  Google Scholar 

  4. Lee LA, Bias WB, Arnett FC Jr et al (1983) Immunogenetics of the neonatal lupus syndrome. Ann Intern Med 99:592–596

    Article  CAS  Google Scholar 

  5. Watson RM, Lane AT, Barnett NK, Bias WB, Arnett FC, Provost TT (1984) Neonatal lupus erythematosus A clinical, serological and immunogenetic study with review of the literature. Medicine 63:362–378

    Article  CAS  Google Scholar 

  6. Brito-Zerón P, Pasoto SG, Robles-Marhuenda A, Mandl T, Vissink A, Armagan B, Praprotnik S, Nocturne G, Sebastian A, Fernandes Moça Trevisani V, Retamozo S, Acar-Denizli N, Wiland P, Sisó-Almirall A, Bootsma H, Mariette X, Ramos-Casals M, Kostov B, Sjögren Big Data Consortium (2020) Autoimmune congenital heart block and primary Sjögren’s syndrome: characterisation and outcomes of 49 cases. Clin Exp Rheumatol 126(4):95–102

    Google Scholar 

  7. Hull RG, Harris EN, Morgan SH, Hughes GR (1983) Anti-Ro antibodies and abortions in women with SLE. Lancet 2:1138

    Article  CAS  Google Scholar 

  8. Watson RM, Braunstein BL, Watson AJ, Hochberg MC, Provost TT (1986) Fetal wastage in women with anti-Ro(SSA) antibody. J Rheumatol 13:90–94

    CAS  PubMed  Google Scholar 

  9. Mavragani CP, Dafni UG, Txioufas AG, Moutsopoulos HM (1998) Pregnancy outcome and anti-Ro/SS-A in autoimmune disease: a retrospective cohort study. Br J Rheumatol 37:740–745

    Article  CAS  Google Scholar 

  10. Le Thi HD, Wechsler B, Piette JC, Bletry O, Godeau P (1994) Pregnancy and its outcome in systemic lupus erythematosus. Q J Med 87:721–729

    Article  Google Scholar 

  11. Brucato A, Doria A, Frassi M, Castellino G, Franceschini F, Faden D, Pisoni MP, Solerte L, Muscarà M, Lojacono A, Motta M, Cavazzana I, Ghirardello A, Vescovi F, Tombini V, Cimaz R, Gambari PF, Meroni PL, Canesi B, Tincani A (2002) Pregnancy outcome in 100 women with autoimmune diseases and anti-Ro/SSA antibodies: a prospective controlled study. Lupus 11:716–721

    Article  CAS  Google Scholar 

  12. Skog A, Lagnefeldt L, Conner P, Wahren-Herlenius M, Sonesson SE (2016) Outcome in 212 anti-Ro/SS-A positive pregnancies and population-based incidence of congenital heart block. Acta Obstet Gynecol Scand 95:98–105

    Article  CAS  Google Scholar 

  13. Martínez-Sánchez N, Pérez-Pinto S, Robles-Marhuenda Á, Arnalich-Fernández F, Martín Cameán M, Hueso Zalvide E, Bartha JL (2017) Obstetric and perinatal outcome in anti-Ro/SSA-positive pregnant women: a prospective cohort study. Immunol Res 65:487–494. https://doi.org/10.1007/s12026-016-8888-5

    Article  CAS  PubMed  Google Scholar 

  14. Lisney AR, Szelinski F, Reiter K, Burmester GR, Rose T, Dorner T (2017) High maternal expression of SIGLEC1 on monocytes as a surrogate marker of a type I interferon signature is a risk factor for the development of autoimmune congenital heart block. Ann Rheum Dis 76:1476–1480

    Article  CAS  Google Scholar 

  15. Clancy RM, Halushka M, Rasmussen SE, Lhakhang T, Chang M, Buyon JP (2019) Siglec-1 macrophages and the contribution of IFN to the development of autoimmune congenital heart block. J Immunol 1(202):48–55

    Article  Google Scholar 

  16. Ambrosi A, Thorlacius GE, Sonesson SE, Wahren-Herlenius M (2021) Interferons and innate immune activation in autoimmune congenital heart block. Scand J Immunol 93(1):e12995. https://doi.org/10.1111/sji.12995

    Article  CAS  PubMed  Google Scholar 

  17. Nicolaides KH (2011) Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn 31:7–15

    Article  Google Scholar 

  18. Nicolaides KH, Spencer K, Avgidou K, Faiola S, Falcon O (2005) Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening. Ultrasound Obstet Gynecol 25:221–226

    Article  CAS  Google Scholar 

  19. Merkatz IR, Nitowsky HM, Macri JN, Johnson WE (1984) An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol 148:886–894

    Article  CAS  Google Scholar 

  20. Canick J, Knight GJ, Palomaki GE et al (1988) Low second trimester maternal serum unconjugated oestriol in pregnancies with Down’s syndrome. BJOG 95:330–333

    Article  CAS  Google Scholar 

  21. Macri JN, Kasturi RV, Krantz DA, Cook EJ, Moore ND, Young JA, Romero K, Larsen JW Jr (1990) Maternal serum Down syndrome screening: free beta protein is a more effective marker than human chorionic gonadotrophin. Am J Obstet Gynecol 163:1248–1253

    Article  CAS  Google Scholar 

  22. Van Lith JM, Pratt JJ, Beekhuis JR, Mantingh A (1993) Second trimester maternal serum immuno-reactive inhibin as a marker for fetal Down’s syndrome. Prenat Diagn 12:801–806

    Article  Google Scholar 

  23. Brambati B, Macintosh MCM, Teisner B, Maguiness S, Shrimanker K, Lanzani A, Bonacchi I, Tului L, Chard T, Grudzinskas JG (1993) Low maternal serum level of pregnancy associated plasma protein (PAPP-A) in the first trimester in association with abnormal fetal karyotype. BJOG 100:324–326

    Article  CAS  Google Scholar 

  24. Aitken DA, Wallace EM, Crossley JA, Swanston IA, van Pareren Y, van Maarle M, Groome NP, Macri JN, Connor JM (1996) Dimeric inhibin A as a marker for Down’s syndrome in early pregnancy. N Engl J Med 334:1231–1236

    Article  CAS  Google Scholar 

  25. Spenser K, Cowans NJ (2013) Correction of first trimester biochemical aneuploidy screening markers for smoking status: influence of gestational age, maternal ethnicity and cigarette dosage. Prenat Diagn 33:11–123

    Google Scholar 

  26. Kagan KO, Wright D, Spencer K, Molina FS, Nicolaides KH (2008) First-trimester screening for trisomy 21 by free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A: impact of maternal and pregnancy characteristics. Ultrasound Obstet Gynecol 31:493–502

    Article  CAS  Google Scholar 

  27. Spencer K, Cowans NJ, Spencer CE, Achillea N (2010) A re-evaluation of the influence of maternal insulin-dependent diabetes on fetal nuchal translucency thickness and first-trimester maternal serum biochemical markers of aneuploidy. Prenat Diagn 30:937–940

    Article  CAS  Google Scholar 

  28. Kuc S, Wortelboer E, Koster M, De Valk H, Schielen P, Visser G (2011) Prediction of macrosomia at birth in type-1 and 2 diabetic pregnancies with biomarkers of early placentation. BJOG 118:748–754

    Article  CAS  Google Scholar 

  29. Savvidou MD, Syngelaki A, Muhaisen M, Emelyanenko E, Nicolaides KH (2012) First trimester maternal serum free β-human chorionic gonadotropin and pregnancy-associated plasma protein A in pregnancies complicated by diabetes mellitus. BJOG 119(4):410–416

    Article  CAS  Google Scholar 

  30. Madsen HN, Ekelund CK, Tørring N, Ovesen PG, Friis-Hansen L, Ringholm L et al (2012) Impact of type 1 diabetes and glycemic control on fetal aneuploidy biochemical markers. Acta Obstet Gynecol Scand 91:57–61

    Article  CAS  Google Scholar 

  31. Lo YM et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  CAS  Google Scholar 

  32. Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC (2011) Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17:510–513

    Article  CAS  Google Scholar 

  33. Gil M et al (2017) Analysis of cell-free DNA in maternal blood screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol 50:302–314

    Article  CAS  Google Scholar 

  34. Clark F, Dickinson JE, Walters BN, Marshall LR, O’Leary PC (1995) Elevated mid-trimester hCG and maternal lupus anticoagulant. Prenat Diagn 15:1035–1039

    Article  CAS  Google Scholar 

  35. Ferriman EL, Sehmi IK, Jones R, Railton A, Hilton RC, Cuckle HS (2000) False-positive maternal serum screening in systemic lupus erythematosis: a case report. Prenat Diagn 20:851

    Article  CAS  Google Scholar 

  36. Maymon R, Sehmi IK, Herman A, Jones RC, Sherman D, Cuckle H (2000) Serum inhibin A levels in pregnant women with systemic lupus erythematosus or antiphospholipid syndrome. Prenat Diagn 20:12–16

    Article  CAS  Google Scholar 

  37. Rego de Sousa MJ et al (2019) First trimester combined screening in patients with systemic lupus erythematosus: impact of pre-analytical variables on risk assessment. Clin Rheumatol 38(5):1251–1255

    Article  Google Scholar 

  38. Yilmaz ZV, Türkmen GG, Yilmaz E, Daglar K, Kibas A, Sanhal C, Yücel A, Uygur D (2017) Influence of Behçet’s disease on first and second trimester serum screening markers. J Obstet Gynaecol Res 43(3):511–515

    Article  CAS  Google Scholar 

  39. Spencer CA, Allen VM, Flowerdew G, Dooley K, Dodds L (2008) Low levels of maternal serum PAPP-A in early pregnancy and the risk of averses outcomes. Prenat Diagn 28(11):1029–1036. https://doi.org/10.1002/pd.2116

    Article  CAS  PubMed  Google Scholar 

  40. Lawrence JB, Oxvig C, Overgaard MT, Sottrup-Jensen L, Gleich GJ, Hays LG, Yates JR, Conover CA (1999) The insulin-like growth factor (IGF)-dependent binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci 96:3149–3153

    Article  CAS  Google Scholar 

  41. Ong CYT, Liao AW, Spencer K, Munim S, Nicolaides KH (2000) First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. Br J Obstet Gynaecol 107:1265–1270

    Article  CAS  Google Scholar 

  42. Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH, Hankins G, Berkowitz RL, Merkatz I, Craigo SD, Timor-Tritsch IE, Carr SR, Wolfe HM, Vidaver J, D'Alton ME (2004) First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: A population-based screening study (The FASTER Trial). Am J Obstet Gynecol 191:1446–1451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Martínez-Sánchez.

Ethics declarations

Disclosure

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Sánchez, N., Robles Marhuenda, A., De la Calle Fernández-Miranda, M. et al. First trimester combined screening test for aneuploidies in anti-Ro carriers pregnant women. Clin Rheumatol 40, 2699–2705 (2021). https://doi.org/10.1007/s10067-021-05616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05616-8

Keywords

Navigation