Skip to main content

Advertisement

Log in

Biologic therapy in Sjögren’s syndrome

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Sjögren’s syndrome (SS) is a chronic autoimmune disease with complex and diverse clinical manifestations. It is characterized by lymphocyte infiltration of exocrine glands such as the salivary gland and lacrimal gland leading to insufficient secretion of the gland, manifested as dry mouth and dry eyes. In addition, it can involve extraglandular organs and cause systemic damage. The pathogenesis of SS is still unclear. At present, symptomatic treatment is the mainstay and there is a lack of effective therapy. With the development of molecular pathways underlying the pathogenesis of SS, more and more novel biological agents are used to treat SS. We summarized and analyzed the existing evidences on the efficacy of biological treatment of SS and their targets. Analysis of the efficacy of biological therapy and improvement of treatment strategies can help to give full play to its therapeutic advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mavragani CP, Moutsopoulos HM (2014) Sjögren’s syndrome review. Can Med Assoc J 186:579–586

    Google Scholar 

  2. Esha A, Cristina G-P, Juan MP-F et al (2014) A retrospective study of long-term outcomes in 152 patients with primary Sjögren’s syndrome: 25-year experience. Clin Med 14:157–164

    Google Scholar 

  3. Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Harada K, Hayashi Y, Sato M (2000) Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production by the introduction of a super-repressor form of inhibitor of nuclear factor kappa B alpha complementary DNA into immortalized human salivary gland acinar cells. Prevention of the destruction of the acinar structure in Sjögren’s syndrome salivary glands. Arthritis Rheum 43:1756–1767

    CAS  PubMed  Google Scholar 

  4. Mariette X, Ravaud P, Steinfeld S, Baron G, Goetz J, Hachulla E, Combe B, Puéchal X, Pennec Y, Sauvezie B, Perdriger A, Hayem G, Janin A, Sibilia J (2004) Inefficacy of infliximab in primary Sjögren’s syndrome: results of the randomized, controlled trial of remicade in primary Sjögren’s syndrome(TRIPSS). Arthritis Rheum 50(4):1270–1276

    CAS  PubMed  Google Scholar 

  5. Sankar V, Brennan MT, Kok MR, Leakan RA, Smith JA, Manny J, Baum BJ, Pillemer SR (2004) Etanercept in Sjögren’s syndrome: a twelve-week randomized, double-blind, placebo-controlled pilot clinical trial. Arthritis Rheum 50(7):2240–2245

    CAS  PubMed  Google Scholar 

  6. Mavragani CP, Niewold TB, Moutsopoulos NM, Pillemer SR, Wahl SM, Crow MK (2007) Augmented interferon-alpha pathway activation in patients with Sjögren’s syndrome treated with etanercept. Arthritis Rheum 56(12):3995–4004

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carsons SE, Vivino FB, Parke A, Carteron N, Sankar V, Brasington R, Brennan MT, Ehlers W, Fox R, Scofield H, Hammitt KM, Birnbaum J, Kassan S, Mandel S (2017) Treatment guidelines for rheumatologic manifestations of Sjögren’s syndrome: use of biologic agents, management of fatigue, and inflammatory musculoskeletal pain. Arthritis Care Res 69:517–527

    Google Scholar 

  8. Ishikawa Y, Hattori K, Ishikawa J, Fujiwara M, Kita Y et al (2019) Refractory Sjögren’s syndrome myelopathy successfully treated with subcutaneous tocilizumab. Medicine 98:27

    Google Scholar 

  9. Komai T, Shoda H, Yamaguchi K, Sakurai K, Shibuya M, Kubo K et al (2013) Neuromyelitis optica spectrum disorder complicated with Sjögren’s syndrome successfully treated with tocilizumab: a case report. Mordern Rheumatol 26:294–296

    Google Scholar 

  10. Justet A, Ottaviani S, Dieudé P, Taillé C (2015) Tocilizumab for refractory organising pneumonia associated with Sjögren’s disease. BMJ Case Rep 14:2014–2016

    Google Scholar 

  11. Blokland SLM, Flessa CM, van Roon JAG, Mavragani CP (2019) Emerging roles for chemokines and cytokines as orchestrators of immunopathology in Sjögren’s syndrome. Rheumatology (Oxford) 5:key438. https://doi.org/10.1093/rheumatology/key438 Online ahead of print

    Article  Google Scholar 

  12. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7receptor in inflammation. J Inflamm 4:1–14. https://doi.org/10.1186/1476-9255-4-5

    Article  CAS  Google Scholar 

  13. Rathinam VAK, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell. 165:792–800. https://doi.org/10.1016/j.cell.2016.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vijmasi T, Chen FYT, Chen YT, Gallup M, McNamara N (2013) Topical administration of interleukin-1 receptor antagonist as a therapy for aqueous-deficient dry eye in autoimmune disease. Mol Vis 19:1957–65.eCollection 2013

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Norheim KB, Harboe E, Gøransson LG, Omdal R (2012) Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome-a double blind, randomised clinical trial. PLoS One 7(1):e30123. https://doi.org/10.1371/journal.pone.0030123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chimenti MS, Talamonti M, Novelli L, Teoli M, Galluzzo M, Triggianese P, Perricone R (2015) Long-term ustekinumab therapy of psoriasis in patients with coexisting rheumatoid arthritis and Sjögren syndrome. Report of two cases and review of literature. J Dermatol Case Rep 9(3):71–75

    PubMed  PubMed Central  Google Scholar 

  17. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301:5–8. https://doi.org/10.1056/NEJM197907053010102

    Article  CAS  PubMed  Google Scholar 

  18. Nezos A, Gravani F, Tassidou A, Kapsogeorgou EK, Voulgarelis M, Koutsilieris M, Crow MK, Mavragani CP (2015) Type I and II interferon signatures in Sjögren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren’s related lymphomagenesis. J Autoimmun 63:47–58. https://doi.org/10.1016/j.jaut.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brkic Z, Versnel MA (2014) Type I IFN signature in primary Sjögren’s syndrome patients. Expert Rev Clin Immunol 10:457–467. https://doi.org/10.1586/1744666X.2014.876364

    Article  CAS  PubMed  Google Scholar 

  20. Brkic Z, Maria NI, Van Helden-Meeuwsen CG, Van De Merwe JP, Van Daele PL, Dalm VA et al (2013) Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 72:728–735. https://doi.org/10.1136/annrheumdis-2012-201381

    Article  CAS  PubMed  Google Scholar 

  21. Hall JC, Baer AN, Shah AA, Criswell LA, Shiboski CH, Rosen A, Casciola-Rosen L (2015) Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthritis Rheum 67:2437–2446. https://doi.org/10.1002/art.39204

    Article  CAS  Google Scholar 

  22. Nguyen CQ, Peck AB (2013) The interferon-signature of Sjögren’s syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front Immunol 4:142

    PubMed  PubMed Central  Google Scholar 

  23. Fisher B, Barone F, Jobling K, Gallagher P, Macrae V, Filby A et al (2019) OP0202 effect of rslv-132 on fatigue in patients with primary Sjögren’s syndrome-results of a phase II randomised, double-blind, placebo-controlled, proof of concept study. Ann Rheum Dis 177:1–177. https://doi.org/10.1136/annrheumdis-2019-eular.3098

    Article  Google Scholar 

  24. McBride JM, Jiang J, Abbas AR (2012) Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum 64:3666–3676

    CAS  PubMed  Google Scholar 

  25. Ship JA, Fox PC, Michalek JE (1999) Treatment of primary Sjögren’s syndrome with low-dose natural human interferon-alpha administered by the oral mucosal route: a phase II clinical trial. IFN Protocol Study Group. J Interf Cytokine Res 19:943–951

    CAS  Google Scholar 

  26. Cummins MJ, Papas A, Kammer GM, Fox PC (2003) Treatment of primary Sjögren’s syndrome with low-dose human interferon alfa administered by the oromucosal route: combined phase III results. Arthritis Rheum 49:585–593

    CAS  PubMed  Google Scholar 

  27. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, Labetoulle M, Ardizzone M, Sibilia J, Fournier C, Chiocchia G, Mariette X (2006) Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci U S A 103:2770–2775. https://doi.org/10.1073/pnas.0510837103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Theander E, Jonsson R, Sjöström B, Brokstad K, Olsson P, Henriksson G (2015) Prediction of Sjögren’s syndrome years before diagnosis and identification of patients with early onset and severe disease course by autoantibody profiling. Arthritis Rheum 67(9):2427–2436. https://doi.org/10.1002/art.39214

    Article  CAS  Google Scholar 

  29. Risselada AP, Looije MF, Kruize AA, Bijlsma JWJ, van Roon JAG (2013) The role of ectopic germinal centers in the immunopathology of primary Sjögren’s syndrome: a systematic review. Semin Arthritis Rheum 42(4):368–376. https://doi.org/10.1016/j.semarthrit.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  30. Nocturne G, Virone A, Hachulla E, Cornec D, Bienvenu B, Marcelli C et al (2016) Rheumatoid factor and disease activity are independent predictors of lymphoma in primary Sjögren’s syndrome. Arthritis Rheum 68(4):977–985. https://doi.org/10.1002/art.39518

    Article  CAS  Google Scholar 

  31. Tedder TF, Boyd AW, Freedman AS et al (1985) The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol 135:973–979

    CAS  PubMed  Google Scholar 

  32. Devauchelle-Pensec V, Pennec Y, Morvan J, Pers JO, Daridon C, Jousse-Joulin S, Roudaut A, Jamin C, Renaudineau Y, Roué IQ, Cochener B, Youinou P, Saraux A (2007) Improvement of Sjögren’s syndrome after two infusions of rituximab (anti-CD20). Arthritis Rheum 57:310–317

    CAS  PubMed  Google Scholar 

  33. Pijpe J, van Imhoff GW, Spijkervet FK, Roodenburg JL, Wolbink GJ, Mansour K et al (2005) Rituximab treatment in patients with primary Sjögren's syndrome: an open-label phase II study. Arthritis Rheum 52:2740–2750

    CAS  PubMed  Google Scholar 

  34. Mekinian A, Ravaud P, Hatron PY, Larroche C, Leone J, Gombert B, Hamidou M, Cantagrel A, Marcelli C, Rist S, Breban M, Launay D, Fain O, Gottenberg JE, Mariette X (2012) Efficacy of rituximab in primary Sjögren's syndrome with peripheral nervous system involvement: results from the AIR registry. Ann Rheum Dis 71:84–87

    CAS  PubMed  Google Scholar 

  35. Meijer JM, Meiners PM, Vissink A, Spijkervet FKL, Abdulahad W, Kamminga N, Brouwer E, Kallenberg CGM, Bootsma H (2010) Effectiveness of rituximab treatment in primary Sjögren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 62(4):960–968

    CAS  PubMed  Google Scholar 

  36. Dass S, Bowman SJ, Vital EM, Ikeda K, Pease CT, Hamburger J, Richards A, Rauz S, Emery P (2008) Reduction of fatigue in Sjögren’s syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann Rherm Dis 67(11):1541–1544

    CAS  Google Scholar 

  37. Seror R, Sordet C, Guillevin L, Hachulla E, Masson C, Ittah M, Candon S, le Guern V, Aouba A, Sibilia J, Gottenberg JE, Mariette X (2007) Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjögren’s syndrome. Ann Rheum Dis 66(3):351–357

    CAS  PubMed  Google Scholar 

  38. Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, Berthelot JM, Perdriger A, Puéchal X, le Guern V, Sibilia J, Gottenberg JE, Chiche L, Hachulla E, Hatron PY, Goeb V, Hayem G, Morel J, Zarnitsky C, Dubost JJ, Pers JO, Nowak E, Saraux A (2014) Treatment of primary Sjögren’s syndrome with rituximab: a randomized trial. Ann Intern Med 160(4):233–242

    PubMed  Google Scholar 

  39. Souza FB, Porfírio GJ, Andriolo BN et al (2016) Rituximab effectiveness and safety for treating primary Sjögren’s syndrome (pSS): systematic review and meta-analysis. PLoS One 11(3):e0150749

    PubMed  PubMed Central  Google Scholar 

  40. Samy E, Wax S, Huard B, Hess H, Schneider P (2017) Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol 36(1):3–19. https://doi.org/10.1080/08830185.2016.1276903

    Article  CAS  PubMed  Google Scholar 

  41. Mariette X, Seror R, Quartuccio L, Baron G, Salvin S, Fabris M, Desmoulins F, Nocturne G, Ravaud P, de Vita S (2015) Efficacy and safety of belimumab in primary Sjögren’s syndrome: results of the BELISS open-label phase II study. Ann Rheum Dis 74:526–531. https://doi.org/10.1136/annrheumdis-2013-203991

    Article  CAS  PubMed  Google Scholar 

  42. De Vita S, Quartuccio L, Seror R, Salvin S, Ravaud P, Mariette X et al (2015) Efficacy and safety of belimumab given for 12 months in primary Sjögren’s syndrome: the BELISS open-label phase II study. Rheumatology (UK) 54:2249–2256. https://doi.org/10.1093/rheumatology/kev257

    Article  Google Scholar 

  43. De Vita S, Quartuccio L, Salvin S, Picco L, Scott CA, Rupolo M et al (2014) Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B-cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol 32(4):490–494

    PubMed  Google Scholar 

  44. Dörner T, Posch MG, Li Y, Petricoul O, Cabanski M, Milojevic JM, Kamphausen E, Valentin M-A, Simonett C, Mooney L, Hüser A, Gram H, Wagner FD, Oliver SJ (2019) Treatment of primary Sjögren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced. Antibody-Dependent Cellular Cytotoxicity Ann Rheum Dis 78(5):641–647. https://doi.org/10.1136/annrheumdis-2018-214720

    Article  CAS  PubMed  Google Scholar 

  45. Pena-Rossi C, Nasonov E, Stanislav M, Yakusevich V, Ershova O, Lomareva N, Saunders H, Hill J, Nestorov I (2009) An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmaco-dynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus. 18(6):547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  46. vanVollenhoven RF, Kinnman N, Vincent E et al (2011) Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum 63(7):1782–1792

    CAS  Google Scholar 

  47. Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang MLK, Tedder TF (1996) CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity. 5:551–562. https://doi.org/10.1016/S1074-7613(00)80270-8

    Article  CAS  PubMed  Google Scholar 

  48. Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Fields SZ, Cesano A, Goldenberg DM (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res 10:5327–5334

    CAS  PubMed  Google Scholar 

  49. Haas KM, Sen S, Sanford IG, Miller AS, Poe JC, Tedder TF (2006) CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J Immunol 177:3063–3073. https://doi.org/10.4049/jimmunol.177.5.3063

  50. Wallace DJ, Hobbs K, Clowse MEB, Petri M, Strand V, Pike M, Merrill JT, Leszczyński P, Neuwelt CM, Jeka S, Houssiau F, Keiserman M, Ordi-Ros J, Bongardt S, Kilgallen B, Galateanu C, Kalunian K, Furie R, Gordon C (2016) Long-term safety and efficacy of epratuzumab in the treatment of moderate-to-severe systemic lupus erythematosus: results from an open-label extension study. Arthritis Care Res 68:534–543. https://doi.org/10.1002/acr.22694

    Article  CAS  Google Scholar 

  51. Steinfeld SD, Tant L, Burmester GR, Teoh NKW, Wegener WA, Goldenberg DM (2006) Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren’s syndrome: an open-label phase I/II study. Arthritis Res Ther 8:1–11. https://doi.org/10.1186/ar2018

    Article  CAS  Google Scholar 

  52. Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E et al (2016) Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol 137(6):1809–1821.e12. https://doi.org/10.1016/j.jaci.2016.01.024

    Article  PubMed  Google Scholar 

  53. Jasiek M, Karras A, Guern VL, Krastinova E, Mesbah R, Faguer S et al (2017) A multicentre study of 95 biopsy-proven cases of renal disease in primary Sjögren’s syndrome. Rheumatology (Oxford) 56:362–370

    CAS  Google Scholar 

  54. Szyszko EA, Brokstad KA, Oijordsbakken G, Jonsson MV, Jonsson R, Skarstein K (2011) Salivary glands of primary Sjögren’s syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther 13(1):R2

    PubMed  PubMed Central  Google Scholar 

  55. Aqrawi LA, Skarstein K, Oijordsbakken G, Brokstad KA (2013) Ro52-and Ro60-specific B cell pattern in the salivary glands of patients with primary Sjögren’s syndrome. Clin Exp Immunol 172(2):228–237

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jakez-Ocampo J, Atisha-Fregoso Y, Llorente L (2015) Refractory primary Sjögren’s syndrome successfully treated with bortezomib. J Clin Rheumatol 21(1):31–32

    PubMed  Google Scholar 

  57. Sun R, Weiying G, Ma Y, Wang J, Min W (2018) Relapsed/refractory acquired thrombotic thrombocytopenic purpura in a patient with Sjögren’s syndrome. Medicine 97:43

    Google Scholar 

  58. Phillips T, Ramchandren R, Wertheim MS, Gutierrez ME, Edenfield WJ, Dawkins F, DeMarini DJ, Zhou L, Yeleswaram S, Newton RC, Chen X, Forero-Torres A (2016) An ongoing open-label phase 1/2 study of INCB050465, a selective PI3Kδ inhibitor, in patients with previously treated B-cell malignancies. Blood. 128:4195

    Google Scholar 

  59. Nayar S, Campos J, Smith CG, Iannizzotto V, Gardner DH, Colafrancesco S et al (2019) Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren’s syndrome. Ann Rheum Dis 78:249–260. https://doi.org/10.1136/annrheumdis-2017-212619

    Article  CAS  PubMed  Google Scholar 

  60. Odilia B, Corneth J, de Bruijn MJW, Rip J, Asmawidjaja PS, Kil LP, Hendriks RW (2016) Enhanced expression of Bruton’s tyrosine kinase in B cells drives systemic autoimmunity by disrupting T cell homeostasis. J Immunol 197:58–67. https://doi.org/10.4049/jimmunol.1600208http://www.jimmunol.org/content/197/1/58

    Article  CAS  Google Scholar 

  61. Corneth OBJ, Verstappen GMP, Paulissen SMJ, de Bruijn MJW, Rip J, Lukkes M et al (2017) Enhanced Bruton’s tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheum 69(6):1313–1324. https://doi.org/10.1002/art.40059

    Article  CAS  Google Scholar 

  62. Munakata W, Ando K, Hatake K, Fukuhara N, Kinoshita T, Fukuhara S, Shirasugi Y, Yokoyama M, Ichikawa S, Ohmachi K, Gion N, Aoi A, Tobinai K (2019) Phase I study of tirabrutinib (ONO-4059/GS-4059) in patients with relapsed or refractory B-cell malignancies in Japan. Cancer Sci 110:1686–1694. https://doi.org/10.1111/cas.13983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Millen MR, Ververs FA, Kruize AA (2014) Dendritic cells, T-cells and epithelial cells: a crucial interplay in immunopathology of primary Sjögren’s syndrome. Expert Rev Clin Immunol 10:521–531

    Google Scholar 

  64. Gao J, Morgan G, Tieu D (2004) ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjögren’s syndrome-like MRL/lpr mice. Exp Eye Res 78:823–835

    CAS  PubMed  Google Scholar 

  65. Hansen A, Daridon C, Dörner T (2010) What do we know about memory B cells in primary Sjögren’s syndrome? Autoimmun Rev 9:600–603

    CAS  PubMed  Google Scholar 

  66. Dooms H (2013) Interleukin-7: fuel for the autoimmune attack. J Autoimmun 45:40–48. https://doi.org/10.1016/j.jaut.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  67. Hillen MR, Blokland SLM, Risselada AP, Bikker A, Lauwerys BR, Kruize AA, Radstake TRDJ, van Roon JAG (2016) High soluble IL-7 receptor expression in Sjögren’s syndrome identifies patients with increased immunopathology and dryness. Ann Rheum Dis 75:1735–1736. https://doi.org/10.1136/annrheumdis-2016-209236

    Article  CAS  PubMed  Google Scholar 

  68. Bikker A, Van Woerkom JM, Kruize AA, Wenting-van Wijk M, De Jager W, Bijlsma JWJ et al (2010) Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren’s syndrome correlates with increased inflammation. Arthritis Rheum 62:969–977. https://doi.org/10.1002/art.27318

    Article  CAS  PubMed  Google Scholar 

  69. Bikker A, Kruize AA, Wenting M, Versnel MA, Bijlsma JWJ, Lafeber FPJG, van Roon JAG (2012) Increased interleukin (IL)-7Rα expression in salivary glands of patients with primary Sjögren’s syndrome is restricted to T cells and correlates with IL-7 expression, lymphocyte numbers and activity. Ann Rheum Dis 71:1027–1033. https://doi.org/10.1136/annrheumdis-2011-200744

    Article  CAS  PubMed  Google Scholar 

  70. Zhou J, Yu Q (2018) Anti-IL-7 receptor-α treatment ameliorates newly established Sjögren’s-like exocrinopathy in non-obese diabetic mice. Biochim Biophys Acta (BBA)-Mol Basis Dis 1864:2438–2447. https://doi.org/10.1016/j.bbadis.2018.04.010

    Article  CAS  Google Scholar 

  71. Shao Q, Gao H (2019) Progress in interleukin-2 therapy for rheumatic immune diseases by regulating the immune balance of T cells. Scand J Immunol 90(6):e12822. https://doi.org/10.1111/sji.12822

    Article  PubMed  Google Scholar 

  72. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151. https://doi.org/10.1038/ni1263

    Article  CAS  PubMed  Google Scholar 

  73. Miao M, Hao Z, Guo Y, Zhang X, Zhang S, Li X et al (2018) Short-term and low-dose IL-2 therapy restores the Th17/Treg balance in the peripheral blood of patients with primary Sjögren’s syndrome. Ann Rheum Dis 77:1838–1840. https://doi.org/10.1136/annrheumdis-2018-213036

    Article  CAS  PubMed  Google Scholar 

  74. Ruderman EM, Pope RM (2005) The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther 7(Suppl 2):S21–S25

    PubMed  PubMed Central  Google Scholar 

  75. Meiners PM, Vissink A, Kroese FGM, Spijkervet FKL, Smitt-Kamminga NS, Abdulahad WH, Bulthuis-Kuiper J, Brouwer E, Arends S, Bootsma H (2014) Abatacept treatment reduces disease activity in early primary Sjögren’s syndrome (open-label proof of concept ASAP study). Ann Rheum Dis 73:1393–1396. https://doi.org/10.1136/annrheumdis-2013-204653

    Article  CAS  PubMed  Google Scholar 

  76. Adler S, Körner M, Förger F, Huscher D, Caversaccio MD, Villiger PM (2013) Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary Sjögren’s syndrome: a pilot study. Arthritis Care Res 65:1862–1868. https://doi.org/10.1002/acr.22052

    Article  CAS  Google Scholar 

  77. Verstappen GM, Meiners PM, Corneth OBJ, Visser A, Arends S, Abdulahad WH et al (2017) Attenuation of follicular helper T cell-dependent B cell hyperactivity by abatacept treatment in primary Sjögren’s syndrome. Arthritis Rheum 69(9):1850–1861. https://doi.org/10.1002/art.40165

    Article  CAS  Google Scholar 

  78. Karnell JL, Rieder SA, Ettinger R, Kolbeck R (2019) Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 141:92–103. https://doi.org/10.1016/j.addr.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  79. Goules A, Tzioufas AG, Manousakis MN, Kirou KA, Crow MK, Routsias JG (2006) Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Autoimmun 26:165–171. https://doi.org/10.1016/j.jaut.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  80. Belkhir R, Gestermann N, Koutero M, Seror R, Tost J, Mariette X, Miceli-Richard C (2014) Upregulation of membrane-bound CD40L on CD4+T cells in women with primary Sjögren’s syndrome. Scand J Immunol 79:37–42. https://doi.org/10.1111/sji.12121

    Article  CAS  PubMed  Google Scholar 

  81. Fisher GPB, Zeher M, Ng WF, Bombardieri M, Posch M, Papas AS et al (2017) The novel anti-CD40 monoclonal antibody CFZ533 shows beneficial effects in patients with primary Sjögren’s syndrome: a phase IIa double-blind, placebo-controlled randomized trial ACR meeting abstracts. Arthritis Rheum 69(Suppl 10)

  82. Wieczorek G, Bigaud M, Pfister S, Ceci M, McMichael K, Afatsawo C, Hamburger M, Texier C, Henry M, Cojean C, Erard M, Mamber N, Rush JS (2019) Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren’s syndrome. Ann Rheum Dis 78:974–978. https://doi.org/10.1136/annrheumdis-2018-213929

    Article  CAS  PubMed  Google Scholar 

  83. Walling BL, Kim M (2018) LFA-1 in T cell migration and differentiation. Front Immunol 9:952. https://doi.org/10.3389/fimmu.2018.00952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao J, Morgan G, Tieu D, Schwalb TA, Luo JY, Wheeler LA, Stern ME (2004) ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjögren’s syndrome-like MRL/lpr mice. Exp Eye Res 78:823–835. https://doi.org/10.1016/j.exer.2003.10.024

    Article  CAS  PubMed  Google Scholar 

  85. Hayashi Y, Haneji N, Yanagi K, Higashiyama H, Yagita H, Hamano H (1995) Prevention of adoptive transfer of murine Sjögren’s syndrome into severe combined immunodeficient (SCID) mice by antibodies against intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). Clin Exp Immunol 102:360–367

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Guimaraes de Souza R, Yu Z, Stern ME, Pflugfelder SC, de Paiva CS (2018) Suppression of Th1-mediated keratoconjunctivitis sicca by Lifitegrast. J Ocul Pharmacol Ther 34(7):543–549. https://doi.org/10.1089/jop.2018.0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pitzalis C, Jones GW, Bombardieri M, Jones SA (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14:447–462

    CAS  PubMed  Google Scholar 

  88. Fava RA, Kennedy SM, Wood SG, Bolstad AI, Bienkowska J, Papandile A, Kelly JA, Mavragani CP, Gatumu M, Skarstein K, Browning JL (2011) Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren’s syndrome. Arthritis Res Ther 13:R182. https://doi.org/10.1186/ar3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bienkowska J, Allaire N, Thai A, Goyal J, Plavina T, Nirula A, Weaver M, Newman C, Petri M, Beckman E, Browning JL (2014) Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis. PLoS One 9:e112545. https://doi.org/10.1371/journal.pone.0112545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. William St Clair E, Baer AN, Wei C, Noaiseh G, Parke A, Coca A et al (2018) Clinical efficacy and safety of baminercept, a lymphotoxin β receptor fusion protein, in primary Sjögren’s syndrome: results from a phase II randomized, double-blind. Placebo-Controlled Trial Arthritis Rheumatol 70(9):1470–1480

    PubMed  Google Scholar 

  91. Hall JC, Casciola-Rosen L, Berger AE, Kapsogeorgou EK, Cheadle C, Tzioufas AG, Baer AN, Rosen A (2012) Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci U S A 109:17609–17614

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Quartuccio L, Salvin S, Fabris M, Maset M, Pontarini E, Isola M, de Vita S (2013) BLyS upregulation in Sjögren’s syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatology. 52(2):276–281. https://doi.org/10.1093/rheumatology/kes180

    Article  CAS  PubMed  Google Scholar 

  93. Lee J, Lee J, Kwok S-K, Baek SY, Jang SG, Hong S-M, Min J-W, Choi SS, Lee J, Cho M-L, Park S-H (2018) JAK-1 inhibition suppresses interferon-induced BAFF production in human salivary gland: potential therapeutic strategy for primary Sjögren’s syndrome. Arthritis Rheum 70(12):2057–2066. https://doi.org/10.1002/art.40589

    Article  CAS  Google Scholar 

  94. Bodewes ILA, Huijser E, van Helden-Meeuwsen CG, Tas L, Huizinga R, Dalm VASH, van Hagen PM, Groot N, Kamphuis S, van Daele PLA, Versnel MA (2018) TBK1: a key regulator and potential treatment target for interferon positive Sjögren’s syndrome, systemic lupus erythematosus and systemic sclerosis. J Autoimmun 91:98–102. https://doi.org/10.1016/j.jaut.2018.02.001

    Article  CAS  Google Scholar 

  95. Tzioufas AG, Goules AV (2018) Limited efficacy of targeted treatments in Sjögren’s syndrome: why? Clin Exp Rheumatol 36(Suppl 112):S27–S28

    Google Scholar 

  96. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM (2010) Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun 34:400–407

    CAS  PubMed  Google Scholar 

  97. Theander E, Vasaitis L, Baecklund E, Nordmark G, Warfvinge G, Liedholm R, Brokstad K, Jonsson R, Jonsson MV (2011) Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren’s syndrome. Ann Rheum Dis 70:1363–1368

    PubMed  PubMed Central  Google Scholar 

  98. Goules AV, Tzioufas AG (2016) Primary Sjögren’s syndrome: clinical phenotypes, outcome and the development of biomarkers. Autoimmun Rev 15(7):695–703

    CAS  PubMed  Google Scholar 

  99. Sada PR, Isenberg D, Ciurtin C (2015) Biologic treatment in Sjögren’s syndrome. Rheumatology (Oxford) 54(2):19–30

    Google Scholar 

Download references

Funding

This study was funded by Xinglin Scholars Research Promotion Project of Chengdu University of TCM (YYZX20180027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Shao.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q. Biologic therapy in Sjögren’s syndrome. Clin Rheumatol 40, 2143–2154 (2021). https://doi.org/10.1007/s10067-020-05429-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05429-1

Keywords

Navigation