Skip to main content

Advertisement

Log in

Clinical features and expression of type I interferon-inducible genes in systemic lupus erythematosus patients harboring rs1143679 polymorphism in China: a single-center, retrospective study

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

This case-control study aimed to analyze the clinical features and determine the expression of type I interferon-induced genes in systemic lupus erythematosus (SLE) patients harboring the CD11b rs1143679 single-nucleotide polymorphism (SNP) and elucidate whether it is involved in the relapses of SLE.

Methods

One hundred twenty-five relatively inactive SLE patients with SLEDAI scores < 6, including 102 CD11b rs1143679 G allele patients as controls and 23 rs1143679 A allele carriers as cases, were enrolled from the SLE patient specimen bank in the Department of Rheumatology and Immunology. The sample set was retrospectively analyzed for differences in clinical features, and quantitative PCR and Western blot analyses were performed to evaluate the relative expression of type I interferon (IFN)-inducible genes.

Results

The 24-h urinary protein levels in the case group were significantly elevated, and serum C3 levels were significantly reduced compared with those in the control group (P = 0.019 and P = 0.021, respectively). The relative mRNA levels of IFN-inducible genes IFIT1, IFIT4, and ISG15 in the case group were higher than that in the control group (P = 0.0257, 0.0344, and 0.0311, respectively) and matched with the Western blot results.

Conclusions

The relative expression of type I IFN-inducible genes in inactive SLE patients harboring the CD11b rs1143679 polymorphism was higher than that in other lupus patients. These findings suggest that the rs1143679 SNP can precipitate relapses in inactive SLE patients.

Key Points

• The rs1143679 GA genotype was associated with SLE clinical features.

• The rs1143679 GA genotype showed higher interferon-inducible gene expression relative to the GG genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121

    Article  CAS  Google Scholar 

  2. Jonsen A, Bengtsson AA, Nived O, Truedsson L, Sturfelt G (2007) Gene-environment interactions in the aetiology of systemic lupus erythematosus. Autoimmunity 40(8):613–617

    Article  Google Scholar 

  3. Martinez-Bueno M, Alarcon-Riquelme ME (2019) Exploring impact of rare variation in systemic lupus erythematosus by a genome wide imputation approach. Front Immunol 10:258

    Article  Google Scholar 

  4. Fagerholm SC, MacPherson M, James MJ, Sevier-Guy C, Lau CS (2013) The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus 22(7):657–663

    Article  CAS  Google Scholar 

  5. Rhodes B, Furnrohr BG, Roberts AL, Tzircotis G, Schett G, Spector TD et al (2012) The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann Rheum Dis 71(12):2028–2034

    Article  CAS  Google Scholar 

  6. Amarilyo G, Verbovetski I, Atallah M, Grau A, Wiser G, Gil O et al (2010) iC3b-opsonized apoptotic cells mediate a distinct anti-inflammatory response and transcriptional NF-kappaBdependent blockade. Eur J Immunol 40(3):699–709

    Article  CAS  Google Scholar 

  7. Faridi MH, Khan SQ, Zhao W, Lee HW, Altintas MM, Zhang K et al (2017) CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest 127(4):1271–1283

    Article  Google Scholar 

  8. Litvak V, Ratushny AV, Lampano AE, Schmitz F, Huang AC, Raman A et al (2012) A FOXO3-IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses. Nature 490(7420):421–425

    Article  CAS  Google Scholar 

  9. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615

    Article  CAS  Google Scholar 

  10. Crow MK, Kirou KA, Wohlgemuth J (2003) Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36(8):481–490

    Article  CAS  Google Scholar 

  11. Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY (2003) Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun 4(3):177–186

    Article  CAS  Google Scholar 

  12. Patel JC, Hall A, Caron E (2002) Vav regulates activation of Rac but not Cdc42 during FcgammaRmediated phagocytosis. Mol Biol Cell 13(4):1215–1226

    Article  CAS  Google Scholar 

  13. Hovanessian AG, Brown RE, Kerr IM (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268(5620):537–540

    Article  CAS  Google Scholar 

  14. Okumura A, Lu G, Pitha-Rowe I, Pitha PM (2006) Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci U S A 103(5):1440–1445

    Article  CAS  Google Scholar 

  15. Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O’Guin AK, Schmidt RE et al (2005) Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 79(22):13974–13983

    Article  CAS  Google Scholar 

  16. Ye S, Pang H, Gu YY, Hua J, Chen XG, Bao CD et al (2003) Protein interaction for an interferoninducible systemic lupus associated gene, IFIT1. Rheumatology (Oxford, England) 42(10):1155–1163

    Article  CAS  Google Scholar 

  17. Sakata K, Nakayamada S, Miyazaki Y, Kubo S, Ishii A, Nakano K et al (2018) Up-regulation of TLR7-mediated IFN-alpha production by plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Front Immunol 9:1957

    Article  Google Scholar 

  18. Chaichian Y, Wallace DJ, Weisman MH (2019) A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J Clin Invest 129(3):958–961

    Article  Google Scholar 

  19. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723

    Article  CAS  Google Scholar 

  20. Gota C, Calabrese L (2003) Induction of clinical autoimmune disease by therapeutic interferonalpha. Autoimmunity 36(8):511–518

    Article  Google Scholar 

  21. Kim-Howard X, Maiti AK, Anaya JM, Bruner GR, Brown E, Merrill JT et al (2010) ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis 69(7):1329–1332

    Article  Google Scholar 

  22. Molineros JE, Kim-Howard X, Deshmukh H, Jacob CO, Harley JB, Nath SK (2009) Admixture in Hispanic Americans: its impact on ITGAM association and implications for admixture mapping in SLE. Genes Immun 10(5):539–545

    Article  CAS  Google Scholar 

  23. Sanchez E, Webb RD, Rasmussen A, Kelly JA, Riba L, Kaufman KM et al (2010) Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus. Arthritis Rheum 62(12):3722–3729

    Article  Google Scholar 

  24. Toller-Kawahisa JE, Vigato-Ferreira IC, Pancoto JA, Mendes-Junior CT, Martinez EZ, Palomino GM et al (2014) The variant of CD11b, rs1143679 within ITGAM, is associated with systemic lupus erythematosus and clinical manifestations in Brazilian patients. Hum Immunol 75(2):119–123

    Article  CAS  Google Scholar 

  25. Zhou Y, Wu J, Kucik DF, White NB, Redden DT, Szalai AJ et al (2013) Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils. Arthritis Rheum 65(11):2907–2916

    Article  CAS  Google Scholar 

  26. Li C, Tong F, Ma Y, Qian K, Zhang J, Chen X (2018) Association of the CD11b rs1143679 polymorphism with systemic lupus erythematosus in the Han Chinese population. J Int Med Res 46(3):1008–1014

    Article  CAS  Google Scholar 

  27. Shirai T, Hirose S (2000) Preface and overview: genetics of SLE; a sine qua non for identification. Int Rev Immunol 19(4-5):289–295

    Article  CAS  Google Scholar 

  28. Zhou Y, Wu J, Kucik DF, White NB, Redden DT, Szalai AJ et al (2013) Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils. Arthritis Rheum 65(11):2907–2901

    Article  CAS  Google Scholar 

  29. Fan Y, Li LH, Pan HF, Tao JH, Sun ZQ, Ye DQ (2011) Association of ITGAM polymorphism with systemic lupus erythematosus: a meta-analysis. J Eur Acad Dermatol Venereol 25(3):271–275

    Article  CAS  Google Scholar 

  30. Roberts AL, Thomas ER, Bhosle S, Game L, Obraztsova O, Aitman TJ et al (2014) Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases. Arthritis Res Ther 16(3):R114

    Article  Google Scholar 

  31. Anaya JM, Kim-Howard X, Prahalad S, Chernavsky A, Canas C, Rojas-Villarraga A et al (2012) Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. Autoimmun Rev 11(4):276–280

    Article  CAS  Google Scholar 

  32. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17(9):2619–2627

    Article  CAS  Google Scholar 

  33. Kevil CG, Hicks MJ, He X, Zhang J, Ballantyne CM, Raman C et al (2004) Loss of LFA-1, but not Mac-1, protects MRL/MpJ-Fas(lpr) mice from autoimmune disease. Am J Pathol 165(2):609–616

    Article  CAS  Google Scholar 

  34. Rosetti F, Tsuboi N, Chen K, Nishi H, Ernandez T, Sethi S et al (2012) Human lupus serum induces neutrophil-mediated organ damage in mice that is enabled by Mac-1 deficiency. J Immunol (Baltimore, Md : 1950) 189(7):3714–3723

    Article  CAS  Google Scholar 

  35. Ehirchiou D, Xiong Y, Xu G, Chen W, Shi Y, Zhang L (2007) CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J Exp Med 204(7):1519–1524

    Article  CAS  Google Scholar 

  36. Luo S, Wang Y, Zhao M, Lu Q (2016) The important roles of type I interferon and interferoninducible genes in systemic lupus erythematosus. Int Immunopharmacol 40:542–549

    Article  CAS  Google Scholar 

  37. Pascual V, Farkas L, Banchereau J (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 18(6):676–682

    Article  CAS  Google Scholar 

  38. Sweeney SE, Kimbler TB, Firestein GS (2010) Synoviocyte innate immune responses: II. Pivotal role of IFN regulatory factor 3. J Immunol (Baltimore, Md : 1950) 184(12):7162–7168

    Article  CAS  Google Scholar 

  39. Han C, Jin J, Xu S, Liu H, Li N, Cao X (2010) Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 11(8):734–742

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable

Funding

This work was supported by the Key Programs of Medical Science and Technology Development Foundation of the Nanjing Department of Health (Grant #QRX11026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Bingjie Gu, Qijie Ren, Leilei Yang, Hai Yuan, and Minning Shen provided the patient samples. Material preparation, data collection, and analysis were performed by Wenyu Xu, Yueyue Zhang, and Xiaoqin Wang. The first draft of the manuscript was written by Wenyu Xu and Xingguo Chen. Peiyu Liu, Dayu Gao, Junyu Zhang, and Chunmei Li commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xingguo Chen.

Ethics declarations

Disclosures

None.

Ethics approval

The protocol for the study was approved by the Medical Ethics Committee of Nanjing Medical University (Nanjing, China).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, Y., Wang, X. et al. Clinical features and expression of type I interferon-inducible genes in systemic lupus erythematosus patients harboring rs1143679 polymorphism in China: a single-center, retrospective study. Clin Rheumatol 40, 1093–1101 (2021). https://doi.org/10.1007/s10067-020-05330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05330-x

Keywords

Navigation