Skip to main content

Advertisement

Log in

Precision medicine for rheumatologists: lessons from the pharmacogenomics of azathioprine

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Precision medicine aims to personalize treatment for both effectiveness and safety. As a critical component of this emerging initiative, pharmacogenomics seeks to guide drug treatment based on genetics. In this review article, we give an overview of pharmacogenomics in the setting of an immunosuppressant frequently prescribed by rheumatologists, azathioprine. Azathioprine has a narrow therapeutic index and a high risk of adverse events. By applying candidate gene analysis and unbiased approaches, researchers have identified multiple variants associated with an increased risk for adverse events associated with azathioprine, particularly bone marrow suppression. Variants in two genes, TPMT and NUDT15, are widely recognized, leading drug regulatory agencies and professional organizations to adopt recommendations for testing before initiation of azathioprine therapy. As more gene-drug interactions are discovered, our field will continue to face the challenge of balancing benefits and costs associated with genetic testing. However, novel approaches in genomics and the integration of clinical and genetic factors into risk scores offer unprecedented opportunities for the application of pharmacogenomics in routine practice.

Key Points

Pharmacogenomics can help us understand how individuals’ genetics may impact their response to medications.

Azathioprine is a success story for the clinical implementation of pharmacogenomics, particularly the effects of TPMT and NUDT15 variants on myelosuppression.

As our knowledge advances, testing and dosing recommendations will continue to evolve, with our field striving to balance costs and benefits to patients.

As we aim toward the goals of precision medicine, future research may integrate increasingly individualized traits—including clinical and genetic characteristics—to predict the safety and efficacy of particular medications for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. National Institutes of Health NLoM What is pharmacogenomics? https://ghr.nlm.nih.gov/primer/genomicresearch/pharmacogenomics. Accessed April 17, 2020 2020

  2. Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5(9):645–656. https://doi.org/10.1038/nrg1432

    Article  CAS  PubMed  Google Scholar 

  3. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, Van Driest SL (2019) Pharmacogenomics. Lancet 394(10197):521–532. https://doi.org/10.1016/s0140-6736(19)31276-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA, Krauss RM, HL ML, Ratain MJ, Relling MV, Ring HZ, Shuldiner AR, Weinshilboum RM, Weiss ST, Pharmacogenetics Research N (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145(10):749–757

    Article  PubMed Central  PubMed  Google Scholar 

  5. Appel GB, Contreras G, Dooley MA, Ginzler EM, Isenberg D, Jayne D, Li L-S, Mysler E, Sánchez-Guerrero J, Solomons N, Wofsy D, Aspreva Lupus Management Study G (2009) Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 20(5):1103–1112. https://doi.org/10.1681/ASN.2008101028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rubbert-Roth A, Finckh A (2009) Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther 11 Suppl 1(Suppl 1):S1. https://doi.org/10.1186/ar2666

    Article  CAS  PubMed  Google Scholar 

  7. Ma X, Xu S (2013) TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep 1(2):177–184. https://doi.org/10.3892/br.2012.42

    Article  CAS  PubMed  Google Scholar 

  8. Johnson KJ, Sanchez HN, Schoenbrunner N (2019) Defining response to TNF-inhibitors in rheumatoid arthritis: the negative impact of anti-TNF cycling and the need for a personalized medicine approach to identify primary non-responders. Clin Rheumatol 38(11):2967–2976. https://doi.org/10.1007/s10067-019-04684-1

    Article  PubMed  Google Scholar 

  9. Dooley MA, Jayne D, Ginzler EM, Isenberg D, Olsen NJ, Wofsy D, Eitner F, Appel GB, Contreras G, Lisk L, Solomons N (2011) Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med 365(20):1886–1895. https://doi.org/10.1056/NEJMoa1014460

    Article  CAS  PubMed  Google Scholar 

  10. Avallone EV, Pica R, Cassieri C, Zippi M, Paoluzi P, Vernia P (2014) Azathioprine treatment in inflammatory bowel disease patients: type and time of onset of side effects. Eur Rev Med Pharmacol Sci 18(2):165–170

    CAS  PubMed  Google Scholar 

  11. Singh G, Fries JF, Spitz P, Williams CA (1989) Toxic effects of azathioprine in rheumatoid arthritis. A national post-marketing perspective. Arthritis Rheum 32(7):837–843

    CAS  PubMed  Google Scholar 

  12. Currey HL, Harris J, Mason RM, Woodland J, Beveridge T, Roberts CJ, Vere DW, Dixon AS, Davies J, Owen-Smith B (1974) Comparison of azathioprine, cyclophosphamide, and gold in treatment of rheumatoid arthritis. Br Med J 3(5934):763–766. https://doi.org/10.1136/bmj.3.5934.763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64(8):753–767. https://doi.org/10.1007/s00228-008-0478-6

    Article  CAS  PubMed  Google Scholar 

  14. Kirk AP, Lennard-Jones JE (1982) Controlled trial of azathioprine in chronic ulcerative colitis. Br Med J (Clin Res Ed) 284(6325):1291–1292. https://doi.org/10.1136/bmj.284.6325.1291

    Article  CAS  Google Scholar 

  15. Pruijt JFM, Haanen JBAG, Hollander AAMJ, den Ottolander GJ (1996) Azathioprine-induced pure red-cell aplasia. Nephrol Dial Transplant 11(7):1371–1373. https://doi.org/10.1093/ndt/11.7.1371

    Article  CAS  PubMed  Google Scholar 

  16. Gilissen LPL, Derijks LJJ, Bos LP, Bus PJ, Hooymans PM, Engels LGJB (2004) Therapeutic drug monitoring in patients with inflammatory bowel disease and established azathioprine therapy. Clin Drug Investig 24(8):479–486. https://doi.org/10.2165/00044011-200424080-00006

    Article  CAS  PubMed  Google Scholar 

  17. Kaskas BA, Louis E, Hindorf U, Schaeffeler E, Deflandre J, Graepler F, Schmiegelow K, Gregor M, Zanger UM, Eichelbaum M, Schwab M (2003) Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut 52(1):140–142. https://doi.org/10.1136/gut.52.1.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adam L, Phulukdaree A, Soma P (2018) Effective long-term solution to therapeutic remission in inflammatory bowel disease: role of azathioprine. Biomed Pharmacother 100:8–14. https://doi.org/10.1016/j.biopha.2018.01.152

    Article  CAS  PubMed  Google Scholar 

  19. Westervelt P, Cho K, Bright DR, Kisor DF (2014) Drug-gene interactions: inherent variability in drug maintenance dose requirements. P T 39(9):630–637

    PubMed  PubMed Central  Google Scholar 

  20. Crews KR, Hicks JK, Pui CH, Relling MV, Evans WE (2012) Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther 92(4):467–475. https://doi.org/10.1038/clpt.2012.120

    Article  CAS  PubMed  Google Scholar 

  21. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176. https://doi.org/10.1056/NEJMra0905980

    Article  CAS  PubMed  Google Scholar 

  22. Administration. FaD table of pharmacogenomic biomarkers in drug labeling. https://www.fda.gov/media/124784/download. Accessed April 24, 2020 2020

  23. Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526(7573):343–350. https://doi.org/10.1038/nature15817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei WQ, Denny JC (2015) Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med 7(1):41. https://doi.org/10.1186/s13073-015-0166-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lennard L, Van Loon JA, Weinshilboum RM (1989) Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 46(2):149–154. https://doi.org/10.1038/clpt.1989.119

    Article  CAS  PubMed  Google Scholar 

  26. Zaza G, Cheok M, Krynetskaia N, et al. (2010) Thiopurine pathway. Pharmacogenet Genomics 20(9):573–574. https://doi.org/10.1097/FPC.0b013e328334338f

  27. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Hicks JK, Schwab M, Klein TE (2013) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 93(4):324–325. https://doi.org/10.1038/clpt.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lennard L, Rees CA, Lilleyman JS, Maddocks JL (1983) Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol 16(4):359–363. https://doi.org/10.1111/j.1365-2125.1983.tb02178.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lennard L, Thomas S, Harrington CI, Maddocks JL (1985) Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. Br J Dermatol 113(6):723–729. https://doi.org/10.1111/j.1365-2133.1985.tb02408.x

    Article  CAS  PubMed  Google Scholar 

  30. Bo J, Schrøder H, Kristinsson J, Madsen B, Szumlanski C, Weinshilboum R, Andersen JB, Schmiegelow K (1999) Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 86(6):1080–1086. https://doi.org/10.1002/(sici)1097-0142(19990915)86:6<1080::aid-cncr26>3.0.co;2-5

    Article  CAS  PubMed  Google Scholar 

  31. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM (1987) Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 41(1):18–25. https://doi.org/10.1038/clpt.1987.4

    Article  CAS  PubMed  Google Scholar 

  32. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH, Relling MV, Evans WE (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126(8):608–614. https://doi.org/10.7326/0003-4819-126-8-199704150-00003

    Article  CAS  PubMed  Google Scholar 

  33. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14(7):407–417. https://doi.org/10.1097/01.fpc.0000114745.08559.db

    Article  CAS  PubMed  Google Scholar 

  34. Consortium CPI CPIC guideline for thiopurines and TPMT and NUDT15. https://cpicpgx.org/guidelines/guideline-for-thiopurines-and-tpmt/. Accessed April 17, 2020 2020

  35. Roberts RL, Barclay ML (2015) Update on thiopurine pharmacogenetics in inflammatory bowel disease. Pharmacogenomics 16(8):891–903. https://doi.org/10.2217/pgs.15.29

    Article  CAS  PubMed  Google Scholar 

  36. Broekman M, Coenen MJH, Wanten GJ, van Marrewijk CJ, Klungel OH, Verbeek ALM, Hooymans PM, Guchelaar HJ, Scheffer H, Derijks LJJ, Wong DR, de Jong DJ (2017) Risk factors for thiopurine-induced myelosuppression and infections in inflammatory bowel disease patients with a normal TPMT genotype. Aliment Pharmacol Ther 46(10):953–963. https://doi.org/10.1111/apt.14323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, Soule JC, Modigliani R, Touze Y, Catala P, Libersa C, Broly F (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118(6):1025–1030

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg R, Irving PM (2015) Toxicity and response to thiopurines in patients with inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 9(7):891–900. https://doi.org/10.1586/17474124.2015.1039987

    Article  CAS  PubMed  Google Scholar 

  39. Kumagai K, Hiyama K, Ishioka S, et al. (2001) Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese. Pharmacogenetics 11(3):275–278.

  40. Cao Q, Zhu Q, Shang Y, Gao M, Si J (2009) Thiopurine methyltransferase gene polymorphisms in Chinese patients with inflammatory bowel disease. Digestion 79(1):58–63. https://doi.org/10.1159/000205268

    Article  CAS  PubMed  Google Scholar 

  41. Takatsu N, Matsui T, Murakami Y, Ishihara H, Hisabe T, Nagahama T, Maki S, Beppu T, Takaki Y, Hirai F, Yao K (2009) Adverse reactions to azathioprine cannot be predicted by thiopurine S-methyltransferase genotype in Japanese patients with inflammatory bowel disease. J Gastroenterol Hepatol 24(7):1258–1264. https://doi.org/10.1111/j.1440-1746.2009.05917.x

    Article  CAS  PubMed  Google Scholar 

  42. Collie-Duguid ESR, Pritchard P, Sludden J, Collier LT, McLeod HL (1999) The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9(1):37–42

    Article  CAS  PubMed  Google Scholar 

  43. Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Park SK, Yang DH, Dubinsky M, Lee I, McGovern DP, Liu J, Song K (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46(9):1017–1020. https://doi.org/10.1038/ng.3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin D, Xia X, Zhang J, Zhang S, Liao F, Zhang G, Zhang Y, Hou Q, Yang X, Wang H, Ma Z, Wang H, Zhu Y, Zhang W, Wang Y, Liu B, Wang L, Xu H, Shu Y (2017) Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget 8(8):13575–13585. https://doi.org/10.18632/oncotarget.14594

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Meng Y, Wang L, Liu Z, Li J, Dong W (2018) Associations between the NUDT15 R139C polymorphism and susceptibility to thiopurine-induced leukopenia in Asians: a meta-analysis. Onco Targets Ther 11:8309–8317. https://doi.org/10.2147/OTT.S177007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan X, Yin D, Men R, Xu H, Yang L (2019) NUDT15 Polymorphism confer increased susceptibility to thiopurine-induced leukopenia in patients with autoimmune hepatitis and related cirrhosis. Front Pharmacol 10:346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schaeffeler E, Jaeger SU, Klumpp V, Yang JJ, Igel S, Hinze L, Stanulla M, Schwab M (2019) Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet Med 21(9):2145–2150. https://doi.org/10.1038/s41436-019-0448-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Walker GJ, Harrison JW, Heap GA, Voskuil MD, Andersen V, Anderson CA, Ananthakrishnan AN, Barrett JC, Beaugerie L, Bewshea CM, Cole AT, Cummings FR, Daly MJ, Ellul P, Fedorak RN, Festen EAM, Florin TH, Gaya DR, Halfvarson J, Hart AL, Heerasing NM, Hendy P, Irving PM, Jones SE, Koskela J, Lindsay JO, Mansfield JC, McGovern D, Parkes M, Pollok RCG, Ramakrishnan S, Rampton DS, Rivas MA, Russell RK, Schultz M, Sebastian S, Seksik P, Singh A, So K, Sokol H, Subramaniam K, Todd A, Annese V, Weersma RK, Xavier R, Ward R, Weedon MN, Goodhand JR, Kennedy NA, Ahmad T (2019) Association of genetic variants in NUDT15 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease. JAMA 321(8):773–785. https://doi.org/10.1001/jama.2019.0709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, Lin TN, Hoshitsuki K, Nersting J, Kihira K, Hofmann U, Komada Y, Kato M, McCorkle R, Li L, Koh K, Najera CR, Kham SK, Isobe T, Chen Z, Chiew EK, Bhojwani D, Jeffries C, Lu Y, Schwab M, Inaba H, Pui CH, Relling MV, Manabe A, Hori H, Schmiegelow K, Yeoh AE, Evans WE, Yang JJ (2016) NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48(4):367–373. https://doi.org/10.1038/ng.3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaparro M, Ordás I, Cabré E, Garcia-Sanchez V, Bastida G, Peñalva M, Gomollón F, García-Planella E, Merino O, Gutiérrez A, Esteve M, Márquez L, Garcia-Sepulcre M, Hinojosa J, Vera I, Muñoz F, Mendoza JL, Cabriada JL, Montoro MA, Barreiro-de Acosta M, Ceña G, Saro C, Aldeguer X, Barrio J, Maté J, Gisbert JP (2013) Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis 19(7):1404–1410. https://doi.org/10.1097/MIB.0b013e318281f28f

    Article  PubMed  Google Scholar 

  51. Heap GA, Weedon MN, Bewshea CM, Singh A, Chen M, Satchwell JB, Vivian JP, So K, Dubois PC, Andrews JM, Annese V, Bampton P, Barnardo M, Bell S, Cole A, Connor SJ, Creed T, Cummings FR, D'Amato M, Daneshmend TK, Fedorak RN, Florin TH, Gaya DR, Greig E, Halfvarson J, Hart A, Irving PM, Jones G, Karban A, Lawrance IC, Lee JC, Lees C, Lev-Tzion R, Lindsay JO, Mansfield J, Mawdsley J, Mazhar Z, Parkes M, Parnell K, Orchard TR, Radford-Smith G, Russell RK, Reffitt D, Satsangi J, Silverberg MS, Sturniolo GC, Tremelling M, Tsianos EV, van Heel DA, Walsh A, Watermeyer G, Weersma RK, Zeissig S, Rossjohn J, Holden AL, International Serious Adverse Events Consortium, I. B. D. Pharmacogenetics Study Group et al (2014) HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat Genet 46(10):1131–1134. https://doi.org/10.1038/ng.3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson A, Jansen LE, Rose RV, Gregor JC, Ponich T, Chande N, Khanna R, Yan B, Jairath V, Khanna N, Sey M, Beaton M, McIntosh K, Teft WA, Kim RB (2018) HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 47(5):615–620. https://doi.org/10.1111/apt.14483

    Article  CAS  PubMed  Google Scholar 

  53. Verbelen M, Weale ME, Lewis CM (2017) Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J 17(5):395–402. https://doi.org/10.1038/tpj.2017.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krynetski EY, Evans WE (2000) Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance. Pharmacology 61(3):136–146

    Article  CAS  PubMed  Google Scholar 

  55. McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE (1994) Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 55(1):15–20. https://doi.org/10.1038/clpt.1994.4

    Article  CAS  PubMed  Google Scholar 

  56. Dubinsky MC, Reyes E, Ofman J, Chiou CF, Wade S, Sandborn WJ (2005) A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol 100(10):2239–2247. https://doi.org/10.1111/j.1572-0241.2005.41900.x

    Article  CAS  PubMed  Google Scholar 

  57. Tavadia SM, Mydlarski PR, Reis MD, Mittmann N, Pinkerton PH, Shear N, Sauder DN (2000) Screening for azathioprine toxicity: a pharmacoeconomic analysis based on a target case. J Am Acad Dermatol 42(4):628–632

    Article  CAS  PubMed  Google Scholar 

  58. Marra CA, Esdaile JM, Anis AH (2002) Practical pharmacogenetics: the cost effectiveness of screening for thiopurine s-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine. J Rheumatol 29(12):2507–2512

    PubMed  Google Scholar 

  59. Simeonidis S, Koutsilieri S, Vozikis A, Cooper DN, Mitropoulou C, Patrinos GP (2019) Application of economic evaluation to assess feasibility for reimbursement of genomic testing as part of personalized medicine interventions. Front Pharmacol 10:830. https://doi.org/10.3389/fphar.2019.00830

    Article  PubMed  PubMed Central  Google Scholar 

  60. Swen JJ, Nijenhuis M, van Rhenen M, de Boer-Veger NJ, Buunk AM, Houwink EJF, Mulder H, Rongen GA, van Schaik RHN, van der Weide J, Wilffert B, Deneer VHM, Guchelaar HJ (2018) Pharmacogenetic information in clinical guidelines: the European perspective. Clin Pharmacol Ther 103(5):795–801. https://doi.org/10.1002/cpt.1049

    Article  PubMed  Google Scholar 

  61. Smith MA, Marinaki AM, Arenas M, Shobowale-Bakre M, Lewis CM, Ansari A, Duley J, Sanderson JD (2009) Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease. Aliment Pharmacol Ther 30(4):375–384. https://doi.org/10.1111/j.1365-2036.2009.04057.x

    Article  CAS  PubMed  Google Scholar 

  62. Kurzawski M, Dziewanowski K, Safranow K, Drozdzik M (2012) Polymorphism of genes involved in purine metabolism (XDH, AOX1, MOCOS) in kidney transplant recipients receiving azathioprine. Ther Drug Monit 34(3):266–274. https://doi.org/10.1097/FTD.0b013e31824aa681

    Article  CAS  PubMed  Google Scholar 

  63. Varnell CD, Fukuda T, Kirby CL, Martin LJ, Warshaw BL, Patel HP, Chand DH, Barletta GM, Van Why SK, VanDeVoorde RG, Weaver DJ, Wilson A, Verghese PS, Vinks AA, Greenbaum LA, Goebel J, Hooper DK (2017) Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs. Pediatr Transplant 21(7). https://doi.org/10.1111/petr.13033

  64. Kurzawski M, Dziewanowski K, Lener A, Drozdzik M (2009) TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients. Eur J Clin Pharmacol 65(5):533–540. https://doi.org/10.1007/s00228-009-0630-y

    Article  CAS  PubMed  Google Scholar 

  65. Honda K, Kobayashi A, Niikura T, Hasegawa T, Saito Z, Ito S, Sasaki T, Komine K, Ishizuka S, Motoi Y, Kubota T, Yamamoto H, Yokoo T (2018) Neutropenia related to an azathioprine metabolic disorder induced by an inosine triphosphate pyrophosphohydrolase (ITPA) gene mutation in a patient with PR3-ANCA-positive microscopic polyangiitis. Clin Nephrol 90(5):363–369. https://doi.org/10.5414/CN109383

    Article  CAS  PubMed  Google Scholar 

  66. Ban H, Andoh A, Imaeda H, Kobori A, Bamba S, Tsujikawa T, Sasaki M, Saito Y, Fujiyama Y (2010) The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J Gastroenterol 45(10):1014–1021. https://doi.org/10.1007/s00535-010-0248-y

    Article  CAS  PubMed  Google Scholar 

  67. Dubois PCA (2011) The risk of azathioprine-induced pancreatitis depends on genetic variants in the HLA gene region. Gut 60(Suppl 1):A60–A60. https://doi.org/10.1136/gut.2011.239301.120

    Article  Google Scholar 

  68. Abla N, Chinn LW, Nakamura T, Liu L, Huang CC, Johns SJ, Kawamoto M, Stryke D, Taylor TR, Ferrin TE, Giacomini KM, Kroetz DL (2008) The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther 325(3):859–868. https://doi.org/10.1124/jpet.108.136523

    Article  CAS  PubMed  Google Scholar 

  69. Hawwa AF, Millership JS, Collier PS, Vandenbroeck K, McCarthy A, Dempsey S, Cairns C, Collins J, Rodgers C, McElnay JC (2008) Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br J Clin Pharmacol 66(4):517–528. https://doi.org/10.1111/j.1365-2125.2008.03248.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiabai MA, Lins TC, Pogue R, Pereira RW (2012) Population analysis of pharmacogenetic polymorphisms related to acute lymphoblastic leukemia drug treatment. Dis Markers 32(4):247–253. https://doi.org/10.3233/DMA-2011-0884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, Cohn D, van Deventer SJ, Hommes DW (2006) Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol 4(1):44–49. https://doi.org/10.1016/j.cgh.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  72. Uchiyama K, Takagi T, Iwamoto Y, Kondo N, Okayama T, Yoshida N, Kamada K, Katada K, Handa O, Ishikawa T, Yasuda H, Sakagami J, Konishi H, Yagi N, Naito Y, Itoh Y (2014) New genetic biomarkers predicting azathioprine blood concentrations in combination therapy with 5-aminosalicylic acid. PLoS One 9(4):e95080. https://doi.org/10.1371/journal.pone.0095080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skrzypczak-Zielinska M, Borun P, Bartkowiak-Kaczmarek A, Zakerska-Banaszak O, Walczak M, Dobrowolska A, Kurzawski M, Waszak M, Lipinski D, Plawski A, Slomski R (2016) A simple method for TPMT and ITPA genotyping using multiplex HRMA for patients treated with thiopurine drugs. Mol Diagn Ther 20(5):493–499. https://doi.org/10.1007/s40291-016-0217-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee MN, Kang B, Choi SY, Kim MJ, Woo SY, Kim JW, Choe YH, Lee SY (2015) Impact of genetic polymorphisms on 6-thioguanine nucleotide levels and toxicity in pediatric patients with ibd treated with azathioprine. Inflamm Bowel Dis 21(12):2897–2908. https://doi.org/10.1097/MIB.0000000000000570

    Article  PubMed  Google Scholar 

  75. Krishnamurthy P, Schwab M, Takenaka K, Nachagari D, Morgan J, Leslie M, Du W, Boyd K, Cheok M, Nakauchi H, Marzolini C, Kim RB, Poonkuzhali B, Schuetz E, Evans W, Relling M, Schuetz JD (2008) Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res 68(13):4983–4989. https://doi.org/10.1016/j.jsbmb.2011.07.002.Identification

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Steinberg KK, Relling MV, Gallagher ML, Greene CN, Rubin CS, French D, Holmes AK, Carroll WL, Koontz DA, Sampson EJ, Satten GA (2007) Genetic studies of a cluster of acute lymphoblastic leukemia cases in Churchill County, Nevada. Environ Health Perspect 115(1):158–164. https://doi.org/10.1289/ehp.9025

    Article  CAS  PubMed  Google Scholar 

  77. Carroll MB, Smith DM, Shaak TL (2017) Genomic sequencing of uric acid metabolizing and clearing genes in relationship to xanthine oxidase inhibitor dose. Rheumatol Int 37(3):445–453. https://doi.org/10.1007/s00296-016-3592-2

    Article  CAS  PubMed  Google Scholar 

  78. Eklund BI, Moberg M, Bergquist J, Mannervik B (2006) Divergent activities of human glutathione transferases in the bioactivation of azathioprine. Mol Pharmacol 70(2):747–754. https://doi.org/10.1124/mol.106.025288

    Article  CAS  PubMed  Google Scholar 

  79. Zhang W, Moden O, Mannervik B (2010) Differences among allelic variants of human glutathione transferase A2-2 in the activation of azathioprine. Chem Biol Interact 186(2):110–117. https://doi.org/10.1016/j.cbi.2010.04.028

    Article  CAS  PubMed  Google Scholar 

  80. Stocco G, Pelin M, Franca R, De Iudicibus S, Cuzzoni E, Favretto D, Martelossi S, Ventura A, Decorti G (2014) Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase? World J Gastroenterol 20(13):3534–3541. https://doi.org/10.3748/wjg.v20.i13.3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hollman AL, Tchounwou PB, Huang HC (2016) The association between gene-environment interactions and diseases involving the human GST superfamily with SNP variants. Int J Environ Res Public Health 13(4):379. https://doi.org/10.3390/ijerph13040379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J, Gaspar JF (2009) The role of GSTA2 polymorphisms and haplotypes in breast cancer susceptibility: a case-control study in the Portuguese population. Oncol Rep 22(3):593–598. https://doi.org/10.3892/or_00000477

    Article  CAS  PubMed  Google Scholar 

  83. Sylvester RK, Steen P, Tate JM, Mehta M, Petrich RJ, Berg A, Kolesar J (2011) Temozolomide-induced severe myelosuppression: analysis of clinically associated polymorphisms in two patients. Anti-Cancer Drugs 22(1):104–110. https://doi.org/10.1097/CAD.0b013e3283407e9f

    Article  CAS  PubMed  Google Scholar 

  84. Andonova IE, Justenhoven C, Winter S, Hamann U, Baisch C, Rabstein S, Spickenheuer A, Harth V, Pesch B, Bruning T, Ko YD, Ganev V, Brauch H (2010) No evidence for glutathione S-transferases GSTA2, GSTM2, GSTO1, GSTO2, and GSTZ1 in breast cancer risk. Breast Cancer Res Treat 121(2):497–502. https://doi.org/10.1007/s10549-009-0589-5

    Article  CAS  PubMed  Google Scholar 

  85. Ke HL, Lin J, Ye Y, Wu WJ, Lin HH, Wei H, Huang M, Chang DW, Dinney CP, Wu X (2015) Genetic variations in glutathione pathway genes predict cancer recurrence in patients treated with transurethral resection and bacillus calmette-guerin instillation for non-muscle invasive bladder cancer. Ann Surg Oncol 22(12):4104–4110. https://doi.org/10.1245/s10434-015-4431-5

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mitrokhin V, Nikitin A, Brovkina O, Khodyrev D, Zotov A, Vachrushev N, Dragunov D, Shim A, Mladenov M, Kamkin A (2017) Association between interleukin-6/6R gene polymorphisms and coronary artery disease in Russian population: influence of interleukin-6/6R gene polymorphisms on inflammatory markers. J Inflamm Res 10:151–160. https://doi.org/10.2147/jir.S141682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song GG, Choi SJ, Ji JD, Lee YH (2013) Genome-wide pathway analysis of a genome-wide association study on multiple sclerosis. Mol Biol Rep 40(3):2557–2564. https://doi.org/10.1007/s11033-012-2341-1

    Article  CAS  PubMed  Google Scholar 

  88. Roberts RL, Gearry RB (2007) IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance. Pharmacogenomics J 7(5):312–317. https://doi.org/10.1038/sj.tpj.6500421

    Article  CAS  PubMed  Google Scholar 

  89. Zabala W, Cruz R, Barreiro-de Acosta M, Chaparro M, Panes J, Echarri A, Esteve M, Carpio D, Andreu M, García-Planella E, Domenech E, Carracedo A, Gisbert JP, Barros F, Eiga Eneida investigators (2013) New genetic associations in thiopurine-related bone marrow toxicity among inflammatory bowel disease patients. Pharmacogenomics 14(6):631–640

    Article  CAS  PubMed  Google Scholar 

  90. Zabala-Fernández W, Barreiro-de Acosta M, Echarri A, Carpio D, Lorenzo A, Castro J, Martínez-Ares D, Pereira S, Martin-Granizo I, Corton M, Carracedo A, Barros F (2011) A pharmacogenetics study of TPMT and ITPA genes detects a relationship with side effects and clinical response in patients with inflammatory bowel disease receiving azathioprine. J Gastrointestin Liver Dis 20(3):247–253. https://doi.org/10.1002/cncr.26110

    Article  PubMed  Google Scholar 

  91. Park SK, Hong M, Ye BD, Kim KJ, Park SH, Yang DH, Hwang SW, Kwak MS, Lee HS, Song K, Yang SK (2016) Influences of XDH genotype by gene-gene interactions with SUCLA2 for thiopurine-induced leukopenia in Korean patients with Crohn's disease. Scand J Gastroenterol 51(6):684–691. https://doi.org/10.3109/00365521.2015.1133698

    Article  CAS  PubMed  Google Scholar 

  92. Chang JY, Park SJ, Jung ES, Jung SA, Moon CM, Chun J, Park JJ, Kim ES, Park Y, Kim TI, Kim WH, Cheon JH (2019) Genotype-based treatment with thiopurine reduces incidence of myelosuppression in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. https://doi.org/10.1016/j.cgh.2019.08.034

  93. Anandi P, Dickson AL, Feng Q, Wei WQ, Dupont WD, Plummer D, Liu G, Octaria R, Barker KA, Kawai VK, Birdwell K, Cox NJ, Hung A, Stein CM, Chung CP (2020) Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. Pharmacogenomics J. https://doi.org/10.1038/s41397-020-0163-4

  94. Payne K, Newman W, Fargher E, Tricker K, Bruce IN, Ollier WE (2007) TPMT testing in rheumatology: any better than routine monitoring? Rheumatology (Oxford) 46(5):727–729. https://doi.org/10.1093/rheumatology/kel427

    Article  CAS  Google Scholar 

  95. van Gennep S, Konté K, Meijer B, Heymans MW, D'Haens GR, Löwenberg M, de Boer NKH (2019) Systematic review with meta-analysis: risk factors for thiopurine-induced leukopenia in IBD. Aliment Pharmacol Ther 50(5):484–506. https://doi.org/10.1111/apt.15403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. C. Michael Stein for his review of the manuscript.

Funding

Supported by grant R01GM126535. Dr. Chung is also funded by the Veterans Health Administration Merit Award 1I01CX001741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia P. Chung.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Laura L. Daniel and Alyson L. Dickson are considered co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, L.L., Dickson, A.L. & Chung, C.P. Precision medicine for rheumatologists: lessons from the pharmacogenomics of azathioprine. Clin Rheumatol 40, 65–73 (2021). https://doi.org/10.1007/s10067-020-05258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05258-2

Keywords

Navigation