Skip to main content

Advertisement

Log in

Interleukin-29 regulates T follicular helper cells by repressing BCL6 in rheumatoid arthritis patients

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

We aimed to investigate whether Interleukin-29 (IL-29) directly affects T follicular helper (Tfh) cell frequency in rheumatoid arthritis (RA), which are both related to RA-specific antibody responses.

Methods

Here, we explored the effect of IL-29 on Tfh cell production in RA patients using a combination of enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM), CD4+ T cell culture, western blotting, and reverse transcription–polymerase chain reaction (RT-PCR).

Results

We reported that serum IL-29 levels, peripheral blood CD4+CXCR5+ Tfh cell frequency, CD4+CXCR5+CD40L+ Tfh cell frequency, and IL-28 receptor (IL-28Rα) and IL-10 receptor (IL-10R2) levels in peripheral blood Tfh cells were higher in RA patients than in healthy controls (HCs). Serum IL-29 levels were positively correlated with peripheral blood CD4+CXCR5+CD40L+ Tfh cell frequency in RA patients, and both parameters also correlated with anti-cyclic citrullinated peptide (anti-CCP) antibodies. Furthermore, we showed that IL-29 may suppress Tfh cell differentiation in RA patients partly via decreased BCL6 level through reduced STAT3 activity.

Conclusions

Taken together, our findings reveal the regulatory effect of IL-29 on Tfh cells, which participate in the pathogenesis of RA and provide new targets for its clinical treatment.

Key Points

There is an increase in circulating Tfh cells and IL-29 levels in RA patients, which are correlated to anti-CCP antibodies levels and may be associated with RA pathogenesis.

We show for the first time that IL-29 may contribute to RA by inhibiting Tfh cell production, through decreasing the activity of STAT3 and downregulating the expression of BCL6.

The use of IL-29 biologics in patients with RA inhibits the production of Tfh cells, may prevent progression in patients with RA, and provides new targets for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  CAS  PubMed  Google Scholar 

  2. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  3. Firestein GS (2005) Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 11:S39–S44

    Article  PubMed  Google Scholar 

  4. Wang M, Wei J, Li H, Ouyang X, Sun X, Tang Y, Chen H, Wang B, Li X (2018) Leptin upregulates peripheral CD4+ CXCR5+ ICOS+ T cells via increased IL-6 in rheumatoid arthritis patients. J Interf Cytokine Res 38:86–92

    Article  CAS  Google Scholar 

  5. Lebre MC, Vieira PL, Tang MW, Aarrass S, Helder B, Newsom-Davis T, Tak PP, Screaton GR (2017) Synovial IL-21/TNF-producing CD4+ T cells induce joint destruction in rheumatoid arthritis by inducing matrix metalloproteinase production by fibroblast-like synoviocytes. J Leukoc Biol 101(3):775–783

    Article  CAS  PubMed  Google Scholar 

  6. Penatti A, Facciotti F, De Matteis R et al (2017) Differences in serum and synovial CD4+ T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 19(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192:1553–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Förster R (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG (2007) Local development of effector and memory T helper cells. Curr Opin Immunol 19:259–267

    Article  CAS  PubMed  Google Scholar 

  10. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG (2009) Follicular helper T cells: lineage and location. Immunity 30:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu M, Cavero V, Lu Q, Li H (2015) Follicular helper T cells in rheumatoid arthritis. Clin Rheumatol 34:1489–1493

    Article  PubMed  Google Scholar 

  12. Wu H, Xu L-L, Teuscher P, Liu H, Kaplan MH, Dent AL (2015) An inhibitory role for the transcription factor Stat3 in controlling IL-4 and Bcl6 expression in follicular helper T cells. J Immunol 195:2080–2089

    Article  CAS  PubMed  Google Scholar 

  13. Crotty S (2011) Follicular helper CD4 T cells (Tfh). Annu Rev Immunol 29:621–663

    Article  CAS  PubMed  Google Scholar 

  14. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, Donlin LT, Henderson LA, Wei K, Mizoguchi F (2017) Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Shan Y, Jiang Z, Feng J, Li C, Ma L, Jiang Y (2013) High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Exp Immunol 174:212–220

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma J, Zhu C, Ma B, Tian J, Baidoo SE, Mao C, Wu W, Chen J, Tong J, Yang M (2012) Increased frequency of circulating follicular helper T cells in patients with rheumatoid arthritis. Clin Dev Immunol 2012:1–7

    Google Scholar 

  17. Coutant F (2019) Pathogenic effects of anti-citrullinated peptide antibodies in rheumatoid arthritis–role for glycosylation. Joint Bone Spine 86:562-567

  18. Xu D, Yan S, Wang H, Gu B, Sun K, Yang X, Sun B, Wang X (2015) IL-29 enhances LPS/TLR4-mediated inflammation in rheumatoid arthritis. Cell Physiol Biochem 37:27–34

    Article  CAS  PubMed  Google Scholar 

  19. Jordan W, Eskdale J, Srinivas S, Pekarek V, Kelner D, Rodia M, Gallagher G (2007) Human interferon lambda-1 (IFN-λ1/IL-29) modulates the Th1/Th2 response. Genes Immun 8:254–261

    Article  CAS  PubMed  Google Scholar 

  20. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld J-C (2004) Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ1 similarities with type I interferon signaling. J Biol Chem 279(31):32269–32274

    Article  CAS  PubMed  Google Scholar 

  21. Chang Q-j, Lv C, Zhao F, Xu T-s, Li P (2017) Elevated serum levels of interleukin-29 are associated with disease activity in rheumatoid arthritis patients with anti-cyclic citrullinated peptide antibodies. Tohoku J Exp Med 241:89–95

    Article  CAS  PubMed  Google Scholar 

  22. Arnett FC, Edworthy SM, Bloch DA, Mcshane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  CAS  PubMed  Google Scholar 

  23. Prevoo M, Van'T Hof MA, Kuper H, Van Leeuwen M, Van De Putte L, Van Riel P (1995) Modified disease activity scores that include twenty-eight-joint counts development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  CAS  PubMed  Google Scholar 

  24. Witte K, Witte E, Sabat R, Wolk K (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21:237–251

    Article  CAS  PubMed  Google Scholar 

  25. Uzé G, Monneron D (2007) IL-28 and IL-29: newcomers to the interferon family. Biochimie 89:729–734

    Article  PubMed  Google Scholar 

  26. de Groen RA, Boltjes A, Hou J, Liu BS, McPhee F, Friborg J, Janssen HL, Boonstra A (2015) IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol 45:250–259

    Article  CAS  PubMed  Google Scholar 

  27. Hou W, Wang X, Ye L, Zhou L, Yang Z-Q, Riedel E, Ho W-Z (2009) Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol 83:3834–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cucak H, Yrlid U, Reizis B, Kalinke U, Johansson-Lindbom B (2009) Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31:491–501

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Zou L, Liu Y-C (2015) T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 28:173–179

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rashu R, Bhuiyan TR, Hoq MR, Hossain L, Paul A, Khan AI, Chowdhury F, Harris JB, Ryan ET, Calderwood SB, Weil AA, Qadri F (2019) Cognate T and B cell interaction and association of follicular helper T cells with B cell responses in Vibrio cholerae O1 infected Bangladeshi adults. Microbes Infect 21:176–183

    Article  CAS  PubMed  Google Scholar 

  31. Hollister K, Kusam S, Wu H, Clegg N, Mondal A, Sawant DV, Dent AL (2013) Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model. J Immunol 191:3705–3711

    Article  CAS  PubMed  Google Scholar 

  32. Lahmann A et al (2019) Bach2 controls T follicular helper cells by direct repression of Bcl-6. J Immunol 202:2229-2239

  33. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang Y-H, Dong C (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raybuck AL, Cho SH, Li J, Rogers MC, Lee K, Williams CL, Shlomchik M, Thomas JW, Chen J, Williams JV (2018) B cell–intrinsic mTORC1 promotes germinal center–defining transcription factor gene expression, somatic hypermutation, and memory B cell generation in humoral immunity. J Immunol 200:2627–2639

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Z, Wang S, Zhu J, Yang Q, Dong H, Huang J (2016) MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer. Biol Chem 397:1087–1095

    Article  CAS  PubMed  Google Scholar 

  36. Amet T, Son YM, Jiang L, Cheon IS, Huang S, Gupta SK, Dent AL, Montaner LJ, Yu Q, Sun J (2017) BCL6 represses antiviral resistance in follicular T helper cells. J Leukoc Biol 102:527–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all members for their participation in this research.

Funding

This work was supported by the Department of Finance of Jilin Province (grant numbers bczby201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Yan, T. & Li, P. Interleukin-29 regulates T follicular helper cells by repressing BCL6 in rheumatoid arthritis patients. Clin Rheumatol 39, 3797–3804 (2020). https://doi.org/10.1007/s10067-020-05151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05151-y

Keywords

Navigation