Skip to main content

Advertisement

Log in

Serum amino acid metabolic profiles of ankylosing spondylitis by targeted metabolomics analysis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

Ankylosing spondylitis (AS) is a common chronic inflammatory arthritis, causing lasting back pain with progressive loss of spinal mobility. However, the exact pathogenesis of AS remains unclear. We aim to use the metabolomics analysis to characterize the metabolic profile of AS, in order to better understand the pathogenesis of AS and monitor disease activity and progression.

Methods

The ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS) was used for investigating the serum amino acid metabolomic profiling of 30 AS patients, in comparison with 32 rheumatoid arthritis (RA) patients and 30 healthy controls, combined with multivariate statistical analysis. Metabolite association analysis with disease activity was performed using generalized linear regression. The metabolic pathway analysis for the important metabolites was performed using MetPA and the metabolic network was constructed.

Results

A total of 29 amino acids and biogenic amines were detected in all participants by UPLC-TQ-MS. It showed significant amino acid differences between the AS/RA patients and control subjects. Additionally, 4-hydroxy-L-proline, alanine, γ-aminobutyric acid, glutamine, and taurine were identified as candidate markers shared by AS/RA groups. Specifically, lysine, proline, serine, and alanine were found correlated with disease activity of AS. Furthermore, the most significant metabolic pathway identified were alanine, aspartate, and glutamate metabolism, arginine and proline metabolism, aminoacyl tRNA biosynthesis and glycine, serine, and threonine metabolism.

Conclusions

These preliminary results demonstrate that UPLC-TQ-MS analysis method is a powerful tool to identify metabolite profiles of AS. Research in identified disease activity–associated metabolites and biological pathways may provide assistance for clinical diagnosis and pathological mechanism of AS.

Key Points

• There are perturbations of serum amino acid metabolism in AS, compared with RA and healthy controls, determined by UPLC-TQ-MS.

• Metabolomics pathway is used to analysis for the differential metabolites of AS.

• The altered serum amino acid could monitor disease activity of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Ankylosing spondylitis

RA:

Rheumatoid arthritis

UPLC-TQ-MS:

Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry

ESI:

Electrospray ionization

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

VIP:

Variable importance for project

KEGG:

The Kyoto Encyclopedia of Genes and Genomes

CRP:

C reaction protein

BCAAs:

Branched-chain amino acids

AAs:

Amino acids

HC:

healthy control

QC:

control sample

VIF:

Variance inflation factor

BMI:

Body mass index

ESR:

Erythrocyte sedimentation rate

BASDAI:

Bath Ankylosing Spondylitis Disease Activity Index

BASFI:

Bath Ankylosing Spondylitis Functional Index

ASDAS-CRP:

Ankylosing Spondylitis Disease Activity Score

mSASSS:

modified Stoke Ankylosing Spondylitis Spinal Score

ACPA:

anti-citrullinated protein/peptide antibodies

DAS28:

Disease activity score 28

RF:

Rheumatoid factor

ANA:

Antinuclear antibodies

References

  1. Nossent JC, Sagen-Johnsen S, Bakland G (2019) Disease activity and patient-reported health measures in relation to cytokine levels in ankylosing spondylitis. Rheumatol Ther. https://doi.org/10.1007/s40744-019-0161-7

  2. Ciurtin C, Cojocaru VM, Miron IM, Preda F, Milicescu M, Bojincă M, Costan O, Nicolescu A, Deleanu C, Kovàcs E, Stoica V (2006) Correlationbetween different components of synovial fluid and pathogenesis of rheumatic diseases. Rom J Intern Med 44:171–181

    PubMed  Google Scholar 

  3. Hanson A, Brown MA (2017 Aug) Genetics and the causes of ankylosing spondylitis. Rheum Dis Clin N Am 43(3):401–414. https://doi.org/10.1016/j.rdc.2017.04.006

    Article  Google Scholar 

  4. Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N (2017) Pathogenesis ofankylosing spondylitis - recent advances and future directions. Nat Rev Rheumatol 13(6):359–367. https://doi.org/10.1038/nrrheum.2017.56

    Article  CAS  PubMed  Google Scholar 

  5. Reveille JD (2015) Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol 34(6):1009–1018. https://doi.org/10.1007/s10067-015-2949-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen C, Rong T, Li Z, Shen J (2019) Noncoding RNAs involved in the pathogenesis of ankylosing spondylitis. Biomed Res Int 2019:6920281. https://doi.org/10.1155/2019/6920281 eCollection 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin R, Yang T, Su H, Ying L, Liu L, Sun C (2016) Saturated fatty acids as possibleimportant metabolites for epithelial ovarian cancer based on the free and esterified fatty acid profiles determined by GC-MS analysis. Cancer Biomark 17:259–269

    Article  CAS  Google Scholar 

  8. Zheng K, Shen N, Chen H, Ni S, Zhang T et al (2017) Global and targeted metabolomicsof synovial fluid discovers special osteoarthritis metabolites. J Orthop Res 35:1973–1981

    Article  CAS  Google Scholar 

  9. Li J, Che N, Xu L, Zhang Q, Wang Q, Tan W, Zhang M (2018) LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin Rheumatol 37:1493–1502

    Article  Google Scholar 

  10. Chen R, Han S, Liu X, Wang K, Zhou Y, Yang C, Zhang X (2018) Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 1085:54–62

    Article  CAS  Google Scholar 

  11. Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M (2019) Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 702:8–16

    Article  CAS  Google Scholar 

  12. Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG (2018) Rheumatoid arthritis and miRNAs: a critical review through a functional view. J Immunol Res 2018:2474529

    Article  Google Scholar 

  13. Jiang M, Chen T, Feng H, Zhang Y, Li L, Zhao A, Niu X, Liang F, Wang M, Zhan J, Lu C, He X, Xiao L, Jia W, Lu A (2013) Serum metabolic signatures of four types of human arthritis. J Proteome Res 12(8):3769–3779. https://doi.org/10.1021/pr400415a

    Article  CAS  PubMed  Google Scholar 

  14. Chen R, Han S, Dong D, Wang Y, Liu Q, Xie W, Li M, Yao M (2015) Serum fatty acid profiles and potential biomarkers of ankylosing spondylitis determined by gas chromatography-mass spectrometry and multivariate statistical analysis. Biomed Chromatogr 29(4):604–611. https://doi.org/10.1002/bmc.3321

    Article  CAS  PubMed  Google Scholar 

  15. Fischer R, Trudgian DC, Wright C, Thomas G, Bradbury LA, Brown MA, Bowness P, Kessler BM (2012) Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis. Mol Cell Proteomics 11(2):M111013904

    Article  Google Scholar 

  16. Gao P, Lu C, Zhang F, Sang P, Yang D, Li X, Kong H, Yin P, Tian J, Lu X, Lu A, Xu G (2008) Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis. Analyst 133(9):1214–1220

    Article  CAS  Google Scholar 

  17. Sasaki C, Hiraishi T, Oku T, Okuma K, Suzumura K et al (2019) Metabolomic approach to the exploration of biomarkers associated with disease activity in rheumatoid arthritis. PLoS One 14(7):e0219400. https://doi.org/10.1371/journal.pone.0219400 eCollection 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T et al (2011) Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 6:e24143

    Article  CAS  Google Scholar 

  19. Smolenska Z, Smolenski RT, Zdrojewski Z (2016) Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment. Biomarkers 21:218–224

    Article  CAS  Google Scholar 

  20. Hisamatsu T, Okamoto S, Hashimoto M, Muramatsu T, Andou A et al (2012) Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS One 7:e31131

    Article  CAS  Google Scholar 

  21. Mahbub MH, Yamaguchi N, Takahashi H, Hase R, Amano H et al (2017) Alteration in plasma free amino acid levels and its association with gout. Environ Health Prev Med 22(1):7. https://doi.org/10.1186/s12199-017-0609-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He M, Harms AC, Wijk E, Wang M, Berger R et al (2019) Role of amino acids in rheumatoid arthritis studied by metabolomics. Int J Rheum Dis 22(1):38–46. https://doi.org/10.1111/1756-185X.13062

    Article  CAS  PubMed  Google Scholar 

  23. Rudwaleit M, Braun J, Sieper J (2009) ASAS classification criteria for axial spondyloarthritis. Z Rheumatol 68:591–593

    Article  CAS  Google Scholar 

  24. Law L, Beckman Rehnman J, Deminger A, Klingberg E, Jacobsson LTH, Forsblad-d’Elia H (2018) Factors related to health-related quality of life in ankylosing spondylitis, overall and stratified by sex. Arthritis Res Ther 20(1):284. https://doi.org/10.1186/s13075-018-1784-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Law L, Beckman Rehnman J, Deminger A, Klingberg E, Jacobsson LTH, Forsblad-d'Elia H (2018) Factorsrelatedtohealth-related quality of lifeinankylosing spondylitis, overall andstratifiedbysex. Arthritis Res Ther 20(1):284. https://doi.org/10.1186/s13075-018-1784-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Creemers MC, Franssen MJ, van't Hof MA, Gribnau FW, van de Putte LB et al (2005) Assessment of outcome in ankylosing spondylitis: an extended radiographic scoringsystem. Ann Rheum Dis 64(1):127–129

    Article  CAS  Google Scholar 

  27. Liu L, Feng R, Guo F, Li Y, Jiao J, Sun C (2015) Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Res Clin Pract 108:84–93

    Article  CAS  Google Scholar 

  28. Liu L, Wang X, Li Y, Sun C (2015) Postprandial differences in the amino acid and biogenic amines profiles of impaired fasting glucose individuals after intake of highland barley. Nutrients 7:5556–5571

    Article  CAS  Google Scholar 

  29. Wang W, Yang GJ, Zhang J, Chen C, Jia ZY et al (2016) Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles. Arthritis Res Ther 18:244

    Article  Google Scholar 

  30. Carlson AK, Rawle RA, Adams E, Greenwood MC, Bothner B et al (2018) Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers. Biochem Biophys Res Commun 499:182–188

    Article  CAS  Google Scholar 

  31. Jain A, Kumar D, Guleria A, Misra DP, Zanwar A, Chaurasia S, Kumar S, Kumar U, Mishra SK, Goel R, Danda D, Misra R (2018) NMR-based serum metabolomics of patients with takayasu arteritis: relationship with disease activity. J Proteome Res 17(9):3317–3324. https://doi.org/10.1021/acs.jproteome.8b00456

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Xiao W, Luo W, Zeng C, Deng Z et al (2016) Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 48:907–914

    Article  CAS  Google Scholar 

  33. Zhou J, Chen J, Hu C, Xie Z, Li H, Wei S, Wang D, Wen C, Xu G (2016) Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography-mass spectrometry. J Pharm Biomed Anal 127:60–67

    Article  CAS  Google Scholar 

  34. Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548

    Article  CAS  Google Scholar 

  35. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    Article  CAS  Google Scholar 

  36. Yang G, Zhang H, Chen T, Zhu W, Ding S, Xu K, Xu Z, Guo Y, Zhang J (2016) Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS. Anal Bioanal Chem 408:4275–4286

    Article  CAS  Google Scholar 

  37. Glass GG (2006) Osteoarthritis. Dis Mon 52:343–362

    Article  Google Scholar 

  38. Tatar Z, Migne C, Petera M, Gaudin P, Lequerre T, Marotte H, Tebib J, Pujos Guillot E, Soubrier M (2016) Variations in the metabolome in response to disease activity of rheumatoid arthritis. BMC Musculoskelet Disord 17(1):353. https://doi.org/10.1186/s12891-016-1214-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, Spector TD (2010) Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis 69(6):1227–1231. https://doi.org/10.1136/ard.2009.120857

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Harbin medical university scientific research innovation fund (No. 2017LCZX98) and the Foundation of Heilongjiang Provincial Health Bureau (No. 2017-146), and Heilongjiang province postdoctoral fund (LBH-Z17142).

Author information

Authors and Affiliations

Authors

Contributions

R.C., X.Z., and Y. Z. conceived and designed the experiments; R.C., Y.Z., X.Z., and S.H. performed the experiments; R.C. and S.H. analyzed the data; B.S., H.C., Y.L., X.L., M.G., C.Y., and D.L. contributed reagents/materials/analysis tools; R.C. and S.H. wrote the paper.

Corresponding author

Correspondence to Rui Chen.

Ethics declarations

The study was approved by the Ethics Committee of Harbin Medical University and conducted in accordance with the tenets of the Declaration of Helsinki. Written informed consent was approved by the Ethics Committee of Harbin Medical University and collected from each participant included in the study.

Disclosures

None.

Disclaimer

The funders had no role in study design, data collection and analysis, preparation of the manuscript, or decision to publish.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary date (Fig. S1-S2 and Table S1-S16) associated with this article can be found in the online version.

ESM 1

(DOC 411 kb)

Fig. S1

PCA scores plot showing clustering of quality control (QC) samples. Red, QC; Blue, Healthy control. (PNG 157 kb)

High resolution image (TIF 228 kb)

Fig. S2

Mapping the rheumatoid arthritis-related metabolites in metabolic pathways. The metabolites marked in red indicate significantly increased in rheumatoid arthritis, and green indicates decreased, blue indicates unchanged and gray indicates un-investigated. (PNG 102 kb)

High resolution image (TIF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, X., Chen, R. et al. Serum amino acid metabolic profiles of ankylosing spondylitis by targeted metabolomics analysis. Clin Rheumatol 39, 2325–2336 (2020). https://doi.org/10.1007/s10067-020-04974-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-04974-z

Keywords

Navigation