Skip to main content
Log in

The behavior of neutrophil extracellular traps and NADPH oxidative activity in pediatric systemic lupus erythematosus: relation to disease activity and lupus nephritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the neutrophil extracellular traps (NETs) assay and NADPH oxidase (Nox2) activity in pediatric systemic lupus erythematosus (pSLE) in relation to each other and SLE characteristics.

Methods

This cross-sectional study included 50 children and adolescents with pSLE who were clinically evaluated and underwent routine laboratory work up of SLE (CBC, ESR, 24 hrs urinary proteins, serum creatinine, complement-3 (C3), anti-dsDNA, and antiphospholipid antibodies). NETs assay and dihydrorhodamine (DHR) test were done for patient group and 50 age- and sex-matched control group.

Results

The level of NETs was found significantly elevated among the patients (median 74.6 mU/ml) as compared to the controls (median 8.9 mU/ml) (p < 0.001), while values of DHR test were comparable between patients (median 95.5%) and controls (median 96.1%) (P = 0.55). There was a significant negative correlation between levels of NETs and DHR (p < 0.001). A significant positive correlation was noted between the 24 hrs urinary protein and NETs level (p < 0.001), but a significant negative correlation with DHR (p < 0.0001). Both NETs and DHR test values did not differ significantly between classes of lupus nephritis. NETs showed a significant positive correlation with anti-dsDNA titer (p = 0.004) and SLEDAI (p < 0.001), but a negative correlation with C3 (p < 0.001). DHR test was positively correlated with C3 levels (p = 0.003), but negatively correlated with anti-dsDNA titers (p = 0.008) and SLEDAI (p < 0.001).

Conclusion

NETs seem to have strong association with biomarkers of pSLE activity. On the other hand, Nox2 activity of the neutrophils was noted to be linked to quiescent state of SLE.

Key Points

Neutrophils have displayed different actions in pSLE through the NETs and Nox2 activity.

The inverse correlation between NETs and Nox2 activity makes the later a non-fundamental pathway for NETs formation.

NETs are associated with pSLE flare and LN activity, while neutrophil Nox2 activity is related to disease remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Finkel T (2003) Neutrophils with a license to kill: permeabilized, not stirred. Dev Cell 4:146–148

    Article  CAS  PubMed  Google Scholar 

  2. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  3. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  CAS  PubMed  Google Scholar 

  4. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    Article  CAS  PubMed  Google Scholar 

  5. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steinberg BE, Grinstein S (2007) Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE  27 2007(379): pe11 https://doi.org/10.1126/stke.3792007pe11

  7. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD et al (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185(12):7413–7425

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu Y, Su K (2013) Neutrophil extracellular traps and systemic lupus erythematosus. J Clin Cell Immunol 4:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell AM, Kashgarian M, Shlomchik MJ (2012) NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 4:157ra141

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravin SD, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M et al (2008) Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122(6):1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cale CM, Morton L, Goldblatt D (2007) Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 148:79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petri M, Orbai A, Alarcón GS, Gordon C, Merrill JT, Fortin PR et al (2012) Derivation and validation of systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum 35:630–640

    Article  CAS  PubMed  Google Scholar 

  15. Petri M, Genovese M, Engle E, Hochberg M (1991) Definition, incidence and clinical description of flare in systemic lupus erythematosus. Arthritis Rheum 8:937–944

    Article  Google Scholar 

  16. Xuejing Z, Jiazhen T, Jun L, Xiangqing X, Shuguang Y, Fuyou L (2012) Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J Biomed Biotechnol 2012:359647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M et al (1996) The development and initial validation of the systemic lupus international collaborating Clincs/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39:363–369

    Article  CAS  PubMed  Google Scholar 

  18. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813–9818

    Article  PubMed  PubMed Central  Google Scholar 

  19. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M, Shealy D, Denny MF, Plumas J, Chaperot L, Kretzler M, Bruce AT, Kaplan MJ (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187:538–552

    Article  CAS  PubMed  Google Scholar 

  20. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188:3522–3531

    Article  CAS  PubMed  Google Scholar 

  21. Knight JS, Kaplan MJ (2012) Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol 24:441–450

    Article  CAS  PubMed  Google Scholar 

  22. Perazzio SF, Salomao R, Silva NP, Andrade LE (2012) Increased neutrophil oxidative burst metabolism in systemic lupus erythematosus. Lupus 21:1543–1551

    Article  CAS  PubMed  Google Scholar 

  23. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ermert D, Urban C, Laube B, Goosmann C, Zychlinsky A, Brinkmann V (2009) Mouse neutrophil extracellular traps in microbial infections. J Innate Immun 1:181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Björnsdottir H, Welin A, Michaëlsson E, Osla V, Berg S, Christenson K, Sundqvist M, Dahlgren C, Karlsson A, Bylund J (2015) Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med 89:1024–1035

    Article  CAS  PubMed  Google Scholar 

  26. Leffler J, Gullstrand B, Jönsen A, Nilsson JÅ, Martin M, Blom AM et al (2013) Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther 15:84

    Article  Google Scholar 

  27. Iba T, Hashiguchi N, Nagaoka I, Tabe Y, Murai M (2013) Neutrophil cell death in response to infection and its relation to coagulation. J Intensive Care 1(1):13

  28. Ouseph MM, Huang Y, Banerjee M, Joshi S, MacDonald L, Zhong Y, Liu H, Li X, Xiang B, Zhang G, Komatsu M, Yue Z, Li Z, Storrie B, Whiteheart SW, Wang QJ (2015) Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood 126:1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gould TJ, Lysov Z, Liaw PC (2015) Extracellular DNA and histones: double-edged swords in immune-thrombosis. J Thromb Haemost 13:82–91

    Article  CAS  Google Scholar 

  30. Rao AN, Kazzaz NM, Knight JS (2015) Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol 7:829–842

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Núñez-Álvarez C, Hernández-Ramírez D, Bockenstedt PL, Liaw PC, Cabral AR, Knight JS (2015) Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol 67:2990–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Boyanapalli R, McPhillips KA, Frasch SC, Janssen WJ, Dinauer MC, Riches DW et al (2010) Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-gamma in a nitric oxide-dependent manner. J Immunol 185:4030–4041

    Article  CAS  PubMed  Google Scholar 

  33. Pulliero A, Marengo B, Longobardi M, Fazzi E, Orcesi S, Olivieri I, Cereda C, Domenicotti C, Balottin U, Izzotti A (2013) Inhibition of the de-myelinating properties of Aicardi-Goutieres syndrome lymphocytes by cathepsin D silencing. Biochem Biophys Res Commun 430:957–962

    Article  CAS  PubMed  Google Scholar 

  34. Fukushima K, Ando M, Ito K, Suga M, Araki S (1990) Stimulus- and cumulative dose-dependent inhibition of O2- production by polymorphonuclear leukocytes of patients receiving corticosteroids. J Clin Lab Immunol 33:117–123

    CAS  PubMed  Google Scholar 

  35. Bengtsson AA, Pettersson A, Wichert S, Gullstrand B, Hansson M, Hellmark T, Johansson ÅCM (2014) Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther 16(3):R120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dalia El-Ghoneimy: Study concept and design, analyzed the data, interpreted the results, and wrote the manuscript.

Mohamed Hesham: Contributed to analysis of the data, interpretation of the results, and drafting the manuscript.

Rasha Hasan: Contributed to analysis of the data, interpretation of the results, and drafting the manuscript.

Mohamed Tarif: Perform the laboratory work up of the study and contributed to drafting the manuscript.

Sally Gouda: Patients assessment and recruitment, contributed to interpretation of the results and drafting the manuscript.

Corresponding author

Correspondence to Dalia Helmy El-Ghoneimy.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghoneimy, D.H., Hesham, M., Hasan, R. et al. The behavior of neutrophil extracellular traps and NADPH oxidative activity in pediatric systemic lupus erythematosus: relation to disease activity and lupus nephritis. Clin Rheumatol 38, 2585–2593 (2019). https://doi.org/10.1007/s10067-019-04547-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-019-04547-9

Keywords

Navigation