Advertisement

Clinical Rheumatology

, Volume 38, Issue 5, pp 1319–1328 | Cite as

Accuracy of neutrophil CD64 expression in diagnosing infection in patients with autoimmune diseases: a meta-analysis

  • Bang-Qin Hu
  • Yi Yang
  • Chun-Jing Zhao
  • De-Feng Liu
  • Fu Kuang
  • Li-Jun Zhang
  • Xian YuEmail author
Review Article
  • 51 Downloads

Abstract

We aimed to systematically evaluate the accuracy of nCD64 in diagnosing infection in patients with autoimmune diseases. Studies were searched in PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and Chongqing VIP databases up to October 2018. There was no restriction for language and age. Prospective studies examining the accuracy of nCD64 in diagnosing infection in patients with autoimmune diseases were included. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess the quality of eligible studies. Stata 15.1 and Meta-DiSc 1.4 software were used for data analysis. Eleven studies fulfilled the inclusion criteria (677 patients, 229 patients with bacterial infection, and 448 without infection). The pooled sensitivity and specificity of nCD64 were 89% (95% confidence interval (CI) 82–93) and 94% (95% CI 91–96), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 14.9 (95% CI 9.3–23.8) and 0.12 (95% CI 0.07–0.20), respectively. The diagnostic odds ratio and area under the summary receiver operating characteristic curve were 123 (95% CI 53–283) and 0.97 (95% CI 0.95–0.98), respectively. The univariate meta-regression analysis showed that region, type of disease, antibiotic therapy, and presentation of nCD64 measurement results were responsible for the heterogeneity. The Deeks’ funnel plot asymmetry test showed that there was no publication bias (p = 0.15). nCD64 has a good overall diagnostic performance for differentiating infection from disease flare in patients with autoimmune diseases. Further studies are needed to confirm the optimized cutoff value.

Keywords

Autoimmune diseases CD64 Infection Meta-analysis Neutrophil 

Notes

Acknowledgements

We thank the Second Affiliated Hospital of Chongqing Medical University for providing research platform.

Funding

This study was funded by Health Commission of Chongqing, China (2016ZDXM010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hellmann DB, Petri M, Whiting-O'Keefe Q (1987) Fatal infections in systemic lupus erythematosus: the role of opportunistic organisms. Medicine (Baltimore) 66(5):341–348CrossRefGoogle Scholar
  2. 2.
    Larsen FF, Petersen JA (2017) Novel biomarkers for sepsis: a narrative review. Eur J Intern Med 45:46–50.  https://doi.org/10.1016/j.ejim.2017.09.030 CrossRefGoogle Scholar
  3. 3.
    Wu JY, Lee SH, Shen CJ, Hsieh YC, Yo PH, Cheng HY, Chan RC, Lee CC, Chang SS (2012) Use of serum procalcitonin to detect bacterial infection in patients with autoimmune diseases: a systematic review and meta-analysis. Arthritis Rheum 64(9):3034–3042.  https://doi.org/10.1002/art.34512 CrossRefGoogle Scholar
  4. 4.
    Lin C, Hsieh S, Keng L et al (2016) Prospective evaluation of procalcitonin, soluble triggering receptor expressed on myeloid cells-1 and C-reactive protein in febrile patients with autoimmune diseases. PLoS One 11(4):e153938.  https://doi.org/10.1371/journal.pone.0153938 Google Scholar
  5. 5.
    Ryu HJ, Seo MR, Choi HJ et al (2018) Mean platelet volume as a marker for differentiating disease flare from infection in Behcet’s disease. Int J Rheum Dis 21(8):1640–1645.  https://doi.org/10.1111/1756-185X.13008 CrossRefGoogle Scholar
  6. 6.
    Ospina FE, Echeverri A, Zambrano D, Suso JP, Martínez-Blanco J, Cañas CA, Tobón GJ (2016) Distinguishing infections vs flares in patients with systemic lupus erythematosus. Rheumatology (Oxford, England) 56(suppl_1):i46–i54.  https://doi.org/10.1093/rheumatology/kew340 Google Scholar
  7. 7.
    Song GG, Bae SC, Lee YH (2015) Diagnostic accuracies of procalcitonin and C-reactive protein for bacterial infection in patients with systemic rheumatic diseases: a meta-analysis. Clin Exp Rheumatol 33(2):166–173Google Scholar
  8. 8.
    Allen E, Bakke AC, Purtzer MZ, Deodhar A (2002) Neutrophil CD64 expression: distinguishing acute inflammatory autoimmune disease from systemic infections. Ann Rheum Dis 61(6):522–525.  https://doi.org/10.1136/ard.61.6.522 CrossRefGoogle Scholar
  9. 9.
    Hussein OA, El-Toukhy MA, El-Rahman HS (2010) Neutrophil CD64 expression in inflammatory autoimmune diseases: its value in distinguishing infection from disease flare. Immunol Investig 39(7):699–712.  https://doi.org/10.3109/08820139.2010.491520 CrossRefGoogle Scholar
  10. 10.
    Wang X, Li ZY, Zeng L, Zhang AQ, Pan W, Gu W, Jiang JX (2015) Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. Crit Care (London, England) 19(1):245.  https://doi.org/10.1186/s13054-015-0972-z CrossRefGoogle Scholar
  11. 11.
    Jia LQ, Shen YC, Hu QJ, Wan C, Wang T, Chen L, Wen FQ (2013) Diagnostic accuracy of neutrophil CD64 expression in neonatal infection: a meta-analysis. J Int Med Res 41(4):934–943.  https://doi.org/10.1177/0300060513489799 CrossRefGoogle Scholar
  12. 12.
    Matsui T, Ohsumi K, Ozawa N et al (2006) CD64 on neutrophils is a sensitive and specific marker for detection of infection in patients with rheumatoid arthritis. J Rheumatol 33(12):2416–2424Google Scholar
  13. 13.
    Ureten K, Ertenli I, Oztürk MA (2005) Neutrophil CD64 expression in Behçet’s disease. J Rheumatol 32(5):849–852Google Scholar
  14. 14.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269Google Scholar
  15. 15.
    Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536.  https://doi.org/10.7326/0003-4819-155-8-201110180-00009
  16. 16.
    Gatsonis C, Paliwal P (2006) Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol 187(2):271–281.  https://doi.org/10.2214/AJR.06.0226 CrossRefGoogle Scholar
  17. 17.
    Li DH, Li Y, Ju J et al (2013) Neutrophil CD64 expression in rheumatoid arthritis patients complicated with infection (in chinese). Chin J Lab Med 36(1):77–79.  https://doi.org/10.3760/cma.j.issn.1009-9158.2013.01.019 Google Scholar
  18. 18.
    Chen FF, Zhang QY, Xing J et al (2018) Clinical value of peripheral blood neutrophil CD64 index in identifying SLE complicated with bacterial infection and active SLE. J Mod Lab Med 33(3):14–17.  https://doi.org/10.3969/j.issn.1671-7414.2018.03.005 Google Scholar
  19. 19.
    Xu QY, Ding ZX, Zhou YL et al (2016) Usefullness of neutrophil CD64 index as a marker to differentiate between infection and disease flare in patients with rheumatoid arthritis. J Jiangsu Univ (Med Edn) 26(5):444–448.  https://doi.org/10.13312/j.issn.1671-7783.y160132
  20. 20.
    Nishino J, Tanaka S, Kadono Y, Matsui T, Komiya A, Nishimura K, Tohma S (2010) The usefulness of neutrophil CD64 expression in the diagnosis of local infection in patients with rheumatoid arthritis in daily practice. J Orthop Sci 15(4):547–552.  https://doi.org/10.1007/s00776-010-1498-5 CrossRefGoogle Scholar
  21. 21.
    Mokuda S, Doi O, Takasugi K (2012) Simultaneous quantitative analysis of the expression of CD64 and CD35 on neutrophils as markers to differentiate between bacterial and viral infections in patients with rheumatoid arthritis. Mod Rheumatol 22(5):750–757.  https://doi.org/10.1007/s10165-011-0587-4 CrossRefGoogle Scholar
  22. 22.
    El-Said EE, Ali SR, El-Sheshtawy FA (2010) Neutrophil CD64 in diagnosis of infection in systemic lupus erythematosus patients. Egypt J Hosp Med 41:600–617Google Scholar
  23. 23.
    Echeverri A, Naranjo-Escobar J, Posso-Osorio I, Aguirre-Valencia D, Zambrano D, Castaño GL, Martínez JD, Cañas CA, Tobón GJ (2018) Neutrophil CD64 expression, procalcitonin and presepsin are useful to differentiate infections from flares in SLE patients with SIRS. Lupus 27(7):1130–1139.  https://doi.org/10.1177/0961203318763740 CrossRefGoogle Scholar
  24. 24.
    Tillinger W, Jilch R, Jilma B, Brunner H, Koeller U, Lichtenberger C, Waldhör T, Reinisch W (2009) Expression of the high-affinity IgG receptor FcRI (CD64) in patients with inflammatory bowel disease: a new biomarker for gastroenterologic diagnostics. Am J Gastroenterol 104(1):102–109.  https://doi.org/10.1038/ajg.2008.6 CrossRefGoogle Scholar
  25. 25.
    Arnett FC, Edworthy AM, Bloch DA et al. (1988) The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324.  https://doi.org/10.1002/art.1780310302 CrossRefGoogle Scholar
  26. 26.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725–1726CrossRefGoogle Scholar
  27. 27.
    Akobeng AK (2007) Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice. Acta Paediatr (Oslo, Norway : 1992) 96(4):487–491.  https://doi.org/10.1111/j.1651-2227.2006.00179.x CrossRefGoogle Scholar
  28. 28.
    Mackay M, Oswald M, Sanchez-Guerrero J, Lichauco J, Aranow C, Kotkin S, Korsunsky I, Gregersen PK, Diamond B (2016) Molecular signatures in systemic lupus erythematosus: distinction between disease flare and infection. Lupus Sci Med 3(1):e000159.  https://doi.org/10.1136/lupus-2016-000159 CrossRefGoogle Scholar
  29. 29.
    Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. BMJ 329(7458):168–169.  https://doi.org/10.1136/bmj.329.7458.168 CrossRefGoogle Scholar
  30. 30.
    Badwey JA, Karovsky ML (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49:695–726.  https://doi.org/10.1146/annurev.bi.49.070180.003403 CrossRefGoogle Scholar
  31. 31.
    Liu L, Wang YX, Zhou J, Long F, Sun HW, Liu Y, Chen YZ, Jiang CL (2005) Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflamm Res 54(1):37–41.  https://doi.org/10.1007/s00011-004-1320-y CrossRefGoogle Scholar
  32. 32.
    Shi SJ, Zhang J, Wu Q, Li J (2015) Diagnostic value of neutrophil CD64 for bacterial infection in patients with hematologic malignancies after chemotherapy. J Exp Hematol 23(3):852–855.  https://doi.org/10.7534/j.issn.1009-2137.2015.03.048 Google Scholar
  33. 33.
    Dandona P, Nix D, Wilson MF, Aljada A, Love J, Assicot M, Bohuon C (1994) Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab 79(6):1605–1608Google Scholar
  34. 34.
    Icardi M, Erickson Y, Kilborn S, Stewart B, Grief B, Scharnweber G (2009) CD64 index provides simple and predictive testing for detection and monitoring of sepsis and bacterial infection in hospital patients. J Clin Microbiol 47(12):3914–3919CrossRefGoogle Scholar
  35. 35.
    Li S, Huang X, Chen Z, Zhong H, Peng Q, Deng Y, Qin X, Zhao J (2013) Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a meta-analysis. Int J Infect Dis 17(1):e12–e23CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  • Bang-Qin Hu
    • 1
    • 2
  • Yi Yang
    • 3
  • Chun-Jing Zhao
    • 2
  • De-Feng Liu
    • 1
  • Fu Kuang
    • 2
  • Li-Jun Zhang
    • 4
  • Xian Yu
    • 3
    Email author
  1. 1.College of PharmacyChongqing Medical UniversityChongqingChina
  2. 2.Department of PharmacyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Phase I Clinical Trial CenterThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  4. 4.Department of Clinical LaboratoryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations