Skip to main content

Advertisement

Log in

Dysregulation of the Wnt signaling pathway in South African patients with diffuse systemic sclerosis

  • Brief Report
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The objective was to explore changes in gene expression in Wnt pathway genes in skin samples of black South Africans with diffuse cutaneous systemic sclerosis (dcSSc). Affected (forearm) and unaffected (upper back) skin samples of eight Black South Africans with active early dcSSc were compared to skin samples from seven ethnically matched control subjects. The Wnt Pathway Plus RT2 Profiler qPCR Array was used to determine gene expression and analyzed for differential expression between cases and controls. Selective validation was done using single-gene TaqMan assays. Several genes were similarly upregulated in both affected and unaffected skin of the dcSSc patients compared to controls. These included the Wnt ligands WNT7A and WNT10A, the frizzled receptors FZD8 and FZD9, intracellular signaling proteins AXIN1 and AXIN2, and the pathway target genes FGF4 and MMP7. Principal component analysis revealed patients clustering into two groups, which co-segregated with clinical features of interstitial lung disease and/or inflammatory myopathy, or the absence of an inflammation phenotype. These two groups showed paradoxical gene expression of the genes TCF7, SOX17, and FRZB in affected and unaffected skin. This study provides further evidence of dysregulation of gene expression at various levels of the Wnt signaling pathway in dcSSc. Moreover, principal component analysis showed two distinct patient clusters of gene expression, which co-segregated with the presence or absence of clinical inflammatory features, and may reflect different pathological pathways in dcSSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bhattacharyya S, Wei J, Varga J (2012) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8(1):42–54. https://doi.org/10.1038/nrrheum.2011.149

    Article  CAS  Google Scholar 

  2. Beyer C, Dees C, Distler JH (2012) Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis. Arch Dermatol Res. https://doi.org/10.1007/s00403-012-1304-7

  3. Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, Palumbo K, Reich N, Zwerina J, Sticherling M, Mattson MP, Distler O, Schett G, Distler JH (2011) Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum 63(5):1396–1404. https://doi.org/10.1002/art.30254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lam AP, Gottardi CJ (2011) Beta-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol 23(6):562–567. https://doi.org/10.1097/BOR.0b013e32834b3309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bergmann C, Distler JH (2016) Canonical Wnt signaling in systemic sclerosis. Lab Investig 96(2):151–155. https://doi.org/10.1038/labinvest.2015.154

    Article  PubMed  CAS  Google Scholar 

  6. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, McCalmont TH, Brown PO, Botstein D, Connolly MK (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 100(21):12319–12324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gardner H, Shearstone JR, Bandaru R, Crowell T, Lynes M, Trojanowska M, Pannu J, Smith E, Jablonska S, Blaszczyk M, Tan FK, Mayes MD (2006) Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum 54(6):1961–1973. https://doi.org/10.1002/art.21894

    Article  PubMed  CAS  Google Scholar 

  8. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH (2012) Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 3:735. https://doi.org/10.1038/ncomms1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Masi AT, Subcommittee For Scleroderma Criteria of the American Rheumatism Association D, Therapeutic Criteria C (1980) Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 23(5):581–590. https://doi.org/10.1002/art.1780230510

    Article  Google Scholar 

  10. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15(2):202–205

    PubMed  CAS  Google Scholar 

  11. Valentini G, Della Rossa A, Bombardieri S, Bencivelli W, Silman AJ, D'Angelo S, Cerinic MM, Belch JF, Black CM, Bruhlmann P, Czirjak L, De Luca A, Drosos AA, Ferri C, Gabrielli A, Giacomelli R, Hayem G, Inanc M, McHugh NJ, Nielsen H, Rosada M, Scorza R, Stork J, Sysa A, van den Hoogen FH, Vlachoyiannopoulos PJ (2001) European multicentre study to define disease activity criteria for systemic sclerosis. II Identification of disease activity variables and development of preliminary activity indexes. Ann Rheum Dis Ann Rheum Dis 60 (6):592–598

  12. Cheng S-L, Shao J-S, Halstead LR, Distelhorst K, Sierra O, Towler DA (2010) Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/β-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res 107(2):271–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, Hanaka T, Ogoshi T, Noguchi S, Mukae H (2016) Profibrotic role of WNT10A via TGF-beta signaling in idiopathic pulmonary fibrosis. Respir Res 17:39. https://doi.org/10.1186/s12931-016-0357-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Spanjer AI, Baarsma HA, Oostenbrink LM, Jansen SR, Kuipers CC, Lindner M, Postma DS, Meurs H, Heijink IH, Gosens R (2016) TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. FASEB J 30(5):1823–1835

    Article  PubMed  CAS  Google Scholar 

  15. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20(4):765–776. https://doi.org/10.1681/ASN.2008060566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lawrence A, Khanna D, Misra R, Aggarwal A (2006) Increased expression of basic fibroblast growth factor in skin of patients with systemic sclerosis. Dermatol Online J 12 (1):2

  18. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, Lollini L, Morris D, Kim Y, DeLustro B (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci 99(9):6292–6297

    Article  PubMed  CAS  Google Scholar 

  19. Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, Whitfield ML (2008) Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One 3(7):e2696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW (2010) Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2(1):53–70. https://doi.org/10.2217/epi.09.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Frank Staedtler (Novartis, Basel) for providing us with the Human Wnt Signaling Pathway RT2 Profiler PCR Array. MT is supported by the Medical Research Council of South Africa. MR is a South African Research Chair in Genomics and Bioinformatics of African populations hosted by the University of the Witwatersrand, funded by the Department of Science and Technology and administered by National Research Foundation of South Africa.

Funding

This work was funded by the Connective Tissue Diseases Grant through the University of the Witwatersrand Faculty of Health Sciences and the National Health Laboratory Service Research Grant. This project was funded by the CRG-Wits-Novartis Visiting Scientist Exchange Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Frost.

Ethics declarations

The study was approved by the Human Research Ethics Committee (Medical), Faculty of Health Sciences, University of the Witwatersrand, and all participants consented in accordance with the Declaration of Helsinki guidelines.

Disclosures

None.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frost, J., Estivill, X., Ramsay, M. et al. Dysregulation of the Wnt signaling pathway in South African patients with diffuse systemic sclerosis. Clin Rheumatol 38, 933–938 (2019). https://doi.org/10.1007/s10067-018-4298-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4298-5

Keywords

Navigation