Skip to main content
Log in

Self-efficacy, pain, and quadriceps capacity at baseline predict changes in mobility performance over 2 years in women with knee osteoarthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

This study examined the extent to which baseline measures of quadriceps strength, quadriceps power, knee pain and self-efficacy for functional tasks, and their interactions, predicted 2-year changes in mobility performance (walking, stair ascent, stair descent) in women with knee osteoarthritis. We hypothesized that lesser strength, power and self-efficacy, and higher pain at baseline would each be independently associated with reduced mobility over 2 years, and each of pain and self-efficacy would interact with strength and power in predicting 2-year change in stair-climbing performance. This was a longitudinal, observational study of women with clinical knee osteoarthritis. At baseline and follow-up, mobility was assessed with the Six-Minute Walk Test, and stair ascent and descent tasks. Quadriceps strength and power, knee pain, and self-efficacy for functional tasks were also collected at baseline. Multiple linear regression examined the extent to which 2-year changes in mobility performances were predicted by baseline strength, power, pain, and self-efficacy, after adjusting for covariates. Data were analyzed for 37 women with knee osteoarthritis over 2 years. Lower baseline self-efficacy predicted decreased walking (β = 1.783; p = 0.030) and stair ascent (β = −0.054; p < 0.001) performances over 2 years. Higher baseline pain intensity/frequency predicted decreased walking performance (β = 1.526; p = 0.002). Lower quadriceps strength (β = 0.051; p = 0.015) and power (β = 0.022; p = 0.022) interacted with lesser self-efficacy to predict worsening stair ascent performance. Strategies to sustain or improve mobility in women with knee osteoarthritis must focus on controlling pain and boosting self-efficacy. In those with worse self-efficacy, developing knee muscle capacity is an important target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dekker J, van Dijk GM, Veenhof C (2009) Risk factors for functional decline in osteoarthritis of the hip or knee. Curr Opin Rheumatol 21:520–524. https://doi.org/10.1097/BOR.0b013e32832e6eaa

    Article  PubMed  Google Scholar 

  2. Sayers SP (2007) High-speed power training: a novel approach to resistance training in older men and women. A brief review and pilot study J Strength Cond Res 21:518–526

    PubMed  Google Scholar 

  3. Rejeski WJ, Miller ME, Foy C et al (2001) Self-efficacy and the progression of functional limitations and self-reported disability in older adults with knee pain. J Gerontol B Psychol Sci Soc Sci 56:S261–S265. https://doi.org/10.1093/geronb/56.5.S261

    Article  CAS  PubMed  Google Scholar 

  4. Sharma L, Cahue S, Song J et al (2003) Physical functioning over three years in knee osteoarthritis: role of psychosocial, local mechanical, and neuromuscular factors. Arthritis Rheum 48:3359–3370. https://doi.org/10.1002/art.11420

    Article  PubMed  Google Scholar 

  5. Sanchez-Ramirez DC, Van Der Leeden M, Van Der Esch M et al (2015) Increased knee muscle strength is associated with decreased activity limitations in established knee osteoarthritis: two-year follow-up study in the Amsterdam osteoarthritis cohort. J Rehabil Med 47:647–654. https://doi.org/10.2340/16501977-1973

    Article  PubMed  Google Scholar 

  6. Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40:4–12. https://doi.org/10.1097/JES.0b013e31823b5f13

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valtonen AM, Pöyhönen T, Manninen M et al (2015) Knee extensor and flexor muscle power explains stair ascension time in patients with unilateral late-stage knee osteoarthritis: a cross-sectional study. Arch Phys Med Rehabil 96:253–259. https://doi.org/10.1016/j.apmr.2014.09.011

    Article  PubMed  Google Scholar 

  8. Accettura AJ, Brenneman EC, Stratford PW, Maly MR (2015) Knee extensor power relates to mobility performance in people with knee osteoarthritis: cross-sectional analysis. Phys Ther 95:989–995. https://doi.org/10.2522/ptj.20140360

    Article  PubMed  PubMed Central  Google Scholar 

  9. White DK, Neogi T, Nguyen U-SDT et al (2016) Trajectories of functional decline in knee osteoarthritis: the osteoarthritis initiative. Rheumatology 55:801–808. https://doi.org/10.1093/rheumatology/kev419

    Article  PubMed  Google Scholar 

  10. Davison M, Ioannidis G, Maly M et al (2016) Intermittent and constant pain and physical function or performance in men and women with knee osteoarthritis: data from the osteoarthritis initiative. Clin Rheumatol 35:371–379. https://doi.org/10.1007/s10067-014-2810-0

    Article  PubMed  Google Scholar 

  11. Riddle DL, Stratford PW (2013) Unilateral vs bilateral symptomatic knee osteoarthritis: associations between pain intensity and function. Rheumatology 52:2229–2237. https://doi.org/10.1093/rheumatology/ket291

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oiestad BE, White DK, Booton R et al (2016) Longitudinal course of physical function in people with symptomatic knee osteoarthritis: data from the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Care Res 68:325–331. https://doi.org/10.1002/acr.22674

    Article  Google Scholar 

  13. Bandura A (1998) Health promotion from the perspective of social cognitive theory. Psychol Health 13:623–649

    Article  Google Scholar 

  14. Miller ME, Rejeski WJ, Messier SP, Loeser RF (2001) Modifiers of change in physical functioning in older adults with knee pain: the Observational Arthritis Study in Seniors (OASIS). Arthritis Rheum 45:331–339. https://doi.org/10.1002/1529-0131(200108)45:4<331::AID-ART345>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  15. Costigan PA, Deluzio KJ, Wyss UP (2002) Knee and hip kinetics during normal stair climbing. Gait Posture 16:31–37

    Article  PubMed  Google Scholar 

  16. Protopapadaki A, Drechsler WI, Cramp MC et al (2007) Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech 22:203–210. https://doi.org/10.1016/j.clinbiomech.2006.09.010

    Article  Google Scholar 

  17. McFadyen BJ, Winter DA (1988) An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 21:733–744. https://doi.org/10.1016/0021-9290(88)90282-5

    Article  CAS  PubMed  Google Scholar 

  18. Winter DA (1984) Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum Mov Sci 3:51–76. https://doi.org/10.1016/0167-9457(84)90005-8

    Article  Google Scholar 

  19. Felson DT, Zhang Y, Hannan MT et al (1995) The incidence and natural history of knee osteoarthritis in the elderly: the Framingham osteoarthritis study. Arthritis Rheum 38:1500–1505. https://doi.org/10.1002/art.1780381017

    Article  CAS  PubMed  Google Scholar 

  20. Davis MA, Ettinger WH, Neuhaus JM, Mallon KP (1991) Knee osteoarthritis and physical functioning: evidence from the NHANES I epidemiologic follow-up study. J Rheumatol 18:591–598

    CAS  PubMed  Google Scholar 

  21. Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  22. Kothari M, Guermazi A, von Ingersleben G et al (2004) Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 14:1568–1573. https://doi.org/10.1007/s00330-004-2312-6

    Article  PubMed  Google Scholar 

  23. Drouin JM, Valovich-McLeod TC, Shultz SJ et al (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91:22–29. https://doi.org/10.1007/s00421-003-0933-0

    Article  PubMed  Google Scholar 

  24. Roos EM, Lohmander LS (2003) The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes 1:64. https://doi.org/10.1186/1477-7525-1-64

    Article  PubMed  PubMed Central  Google Scholar 

  25. Collins NJ, Prinsen CAC, Christensen R et al (2016) Knee Injury and Osteoarthritis Outcome Score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthr Cartil 24:1317–1329. https://doi.org/10.1016/j.joca.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  26. Lorig K, Chastain RL, Ung E et al (1989) Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis Rheum 32:37–44

    Article  CAS  PubMed  Google Scholar 

  27. Brady TJ (2011) Measures of self-efficacy: Arthritis Self-Efficacy Scale (ASES), Arthritis Self-Efficacy Scale-8 Item (ASES-8), Children’s Arthritis Self-Efficacy Scale (CASE), Chronic Disease Self-Efficacy Scale (CDSES), Parent’s Arthritis Self-Efficacy Scale (PASE), and Rheumatoid Arthritis Self-Efficacy Scale (RASE). Arthritis Care Res 63:S473–S485. https://doi.org/10.1002/acr.20567

    Article  Google Scholar 

  28. HY D, Newton PJ, Salamonson Y et al (2009) A review of the six-minute walk test: its implication as a self-administered assessment tool. Eur J Cardiovasc Nurs 8:2–8. https://doi.org/10.1016/j.ejcnurse.2008.07.001

    Article  Google Scholar 

  29. Kennedy DM, Stratford PW, Wessel J et al (2005) Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskelet Disord 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chun SW, Kim KE, Jang SN et al (2013) Muscle strength is the main associated factor of physical performance in older adults with knee osteoarthritis regardless of radiographic severity. Arch Gerontol Geriatr 56:377–382. https://doi.org/10.1016/j.archger.2012.10.013

    Article  PubMed  Google Scholar 

  31. Naylor JM, Hayen A, Davidson E et al (2014) Minimal detectable change for mobility and patient-reported tools in people with osteoarthritis awaiting arthroplasty. BMC Musculoskelet Disord 15:235. https://doi.org/10.1186/1471-2474-15-235

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Dijk GM, Dekker J, Veenhof C, Van Den Ende CHM (2006) Course of functional status and pain in osteoarthritis of the hip or knee: a systematic review of the literature. Arthritis Care Res 55:779–785. https://doi.org/10.1002/art.22244

    Article  Google Scholar 

  33. Pisters MF, Veenhof C, van Dijk GM et al (2012) The course of limitations in activities over 5 years in patients with knee and hip osteoarthritis with moderate functional limitations: risk factors for future functional decline. Osteoarthr Cartil 20:503–510. https://doi.org/10.1016/j.joca.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  34. Bartlett SJ, Ling SM, Mayo NE et al (2011) Identifying common trajectories of joint space narrowing over two years in knee osteoarthritis. Arthritis Care Res 63:1722–1728. https://doi.org/10.1002/acr.20614

    Article  Google Scholar 

  35. Bastick AN, Wesseling J, Damen J et al (2016) Defining knee pain trajectories in early symptomatic knee osteoarthritis in primary care: 5-year results from a nationwide prospective cohort study (CHECK). Br J Gen Pract 66:e32–e39. https://doi.org/10.3399/bjgp15X688129

    Article  PubMed  Google Scholar 

  36. Knapik JJ, Ramos MU (1980) Isokinetic and isometric torque relationships in the human body. Arch Phys Med Rehabil 61:64–67

    CAS  PubMed  Google Scholar 

  37. Segal NA, Glass NA, Torner J et al (2010) Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthr Cartil 18:769–775. https://doi.org/10.1016/j.joca.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Glass NA, Torner JC, Frey Law LA et al (2013) The relationship between quadriceps muscle weakness and worsening of knee pain in the MOST cohort: a 5-year longitudinal study. Osteoarthr Cartil 21:1154–1159. https://doi.org/10.1016/j.joca.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Callahan DM, Tourville TW, Slauterbeck JR et al (2015) Reduced rate of knee extensor torque development in older adults with knee osteoarthritis is associated with intrinsic muscle contractile deficits. Exp Gerontol 72:16–21. https://doi.org/10.1016/j.exger.2015.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bandura A (1986) Social foundations of thought and action: a social cognitive theory. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  41. Bodenheimer T, Lorig K, Holman H, Grumbach K (2002) Patient self-management of chronic disease in primary care. J Am Med Assoc 288:2469–2475. https://doi.org/10.1001/jama.288.19.2469

    Article  Google Scholar 

  42. Fillingim RB, King CD, Ribeiro-Dasilva MC et al (2009) Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 10:447–485. https://doi.org/10.1016/j.jpain.2008.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 40:250–266. https://doi.org/10.1016/j.semarthrit.2009.10.001

    Article  PubMed  Google Scholar 

  44. Neogi T, Zhang Y (2013) Epidemiology of osteoarthritis. Rheum Dis Clin N Am 39:1–19. https://doi.org/10.1016/j.rdc.2012.10.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kristina Calder, Neha Arora, and Emily Wiebenga from the MacMobilize Laboratory at McMaster University, Canada, for their help with recruitment and data collection, as well as the study participants for making this study possible.

Funding

This work was supported by the Canadian Institutes of Health Research [Joint Motion Program (NMB), Operating Grant No. 102643 (MRM), New Investigator Award (MRM)]; the Ontario Ministry of Training, Colleges and Universities [Ontario Graduate Scholarships (NMB, AAG)]; the Arthritis Society (AAG); the Canadian Foundation for Innovation [No. 27501 (MRM)]; and the Ministry of Research and Innovation [Ontario Research Fund (MRM)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica R. Maly.

Ethics declarations

Informed consent and ethical approval

This longitudinal, observational study was approved by the institutional human research ethics board. Participants provided written, informed consent prior to their inclusion in the study.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisson, N.M., Gatti, A.A., Stratford, P.W. et al. Self-efficacy, pain, and quadriceps capacity at baseline predict changes in mobility performance over 2 years in women with knee osteoarthritis. Clin Rheumatol 37, 495–504 (2018). https://doi.org/10.1007/s10067-017-3903-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3903-3

Keywords

Navigation