Skip to main content

Advertisement

Log in

High levels of oxidized fatty acids in HDL are associated with impaired HDL function in patients with active rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate oxidation products of arachidonic acid and linoleic acid in lipoproteins and synovial fluid (SF) from patients with active rheumatoid arthritis (RA) compared to non-RA controls. High-density lipoproteins (HDL) and low-density lipoproteins (LDL) were isolated from plasma using fast protein liquid chromatography and HDL was isolated from SF using dextran sulfate precipitation. 5-Hydroxyeicosatetraenoic acid (HETE), 12-HETE, 15-HETE, 9 hydroxyoctadecadienoic (HODE), and 13-HODE levels were measured in HDL, LDL, and SF by liquid chromatography–tandem mass spectrometry. HDL’s anti-inflammatory function, cholesterol levels, myeloperoxidase (MPO) and paraoxonase 1 (PON1) activities were determined as previously. 5-HETE, 15-HETE, 9-HODE, and 13-HODE levels were significantly increased in HDL and LDL from patients with active RA (n = 10) compared to healthy controls (n = 8) and correlated significantly with measures of systemic inflammation, particularly in HDL (r = 0.65–0.80, p values < 0.004). Higher HETES and HODES in HDL were also significantly correlated with impaired HDL function as measured by the HDL inflammatory index (HII) (r = 0.54–0.58; p values < 0.03). 15-HETE levels and MPO activity were higher in RA SF (n = 10) compared to osteoarthritis (OA) SF(n = 11), and HDL from RA SF had worse function compared to OA SF HDL (HII = 2.1 ± 1.9 and 0.5 ± 0.1), respectively (p < 0.05). Oxidation products of arachidonic acid and linoleic acid are increased in HDL and LDL from patients with active RA compared to healthy controls, and are associated with worse anti-oxidant function of HDL. These results suggest a potential mechanism by which oxidative stress from active RA increases oxidized fatty acids in HDL, promoting HDL dysfunction, and thereby increasing atherosclerotic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Nurmohamed MT, Heslinga M, Kitas GD (2015) Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol 11(12):693–704

    Article  CAS  PubMed  Google Scholar 

  2. Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46(4):862–873

    Article  PubMed  Google Scholar 

  3. Roman MJ, Moeller E, Davis A, Paget SA, Crow MK, Lockshin MD et al (2006) Preclinical carotid atherosclerosis in patients with rheumatoid arthritis. Ann Intern Med 144(4):249–256

    Article  PubMed  Google Scholar 

  4. Maradit-Kremers H, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE (2005) Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum 52(3):722–732

    Article  PubMed  Google Scholar 

  5. Del Rincon I, Williams K, Stern MP, Freeman GL, O'Leary DH, Escalante A (2003) Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects. Arthritis Rheum 48(7):1833–1840

    Article  PubMed  Google Scholar 

  6. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6(6):265–278

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kakinuma T, Yasuda T, Nakagawa T, Hiramitsu T, Akiyoshi M, Akagi M et al (2004) Lectin-like oxidized low-density lipoprotein receptor 1 mediates matrix metalloproteinase 3 synthesis enhanced by oxidized low-density lipoprotein in rheumatoid arthritis cartilage. Arthritis Rheum 50(11):3495–3503

    Article  CAS  PubMed  Google Scholar 

  8. Imaizumi S, Grijalva V, Navab M, Van Lenten BJ, Wagner AC, Anantharamiah GM et al (2010) L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice. Drug Metab Lett 4(3):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM et al (2011) Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 60(10):2617–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berliner JA, Watson ADA (2005) Role for oxidized phospholipids in atherosclerosis. N Engl J Med 353(1):9–11

    Article  CAS  PubMed  Google Scholar 

  11. Morgantini C, Meriwether D, Baldi S, Venturi E, Pinnola S, Wagner AC et al (2014) HDL lipid composition is profoundly altered in patients with type 2 diabetes and atherosclerotic vascular disease. Nutr Metab Cardiovasc Dis 24(6):594–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D et al (2014) Apolipoprotein A-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation 130(9):776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ross DJ, Hough G, Hama S, Aboulhosn J, Belperio JA, Saggar R et al (2015) Proinflammatory high-density lipoprotein results from oxidized lipid mediators in the pathogenesis of both idiopathic and associated types of pulmonary arterial hypertension. Pulm Circ 5(4):640–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD et al (2000) Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res 41(9):1495–1508

    CAS  PubMed  Google Scholar 

  15. Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L et al (2000) Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res 41(9):1481–1494

    CAS  PubMed  Google Scholar 

  16. Oram JF, Yokoyama S (1996) Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res 37(12):2473–2491

    CAS  PubMed  Google Scholar 

  17. Charles-Schoeman C, Lee YY, Grijalva V, Amjadi S, Fitzgerald J, Ranganath VK et al (2012) Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann Rheum Dis 71(7):1157–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charles-Schoeman C, Watanabe J, Lee YY, Furst DE, Amjadi S, Elashoff D et al (2009) Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum 60(10):2870–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AMA (2001) Cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res 42(8):1308–1317

    CAS  PubMed  Google Scholar 

  20. Charles-Schoeman C, Khanna D, Furst DE, McMahon M, Reddy ST, Fogelman AM et al (2007) Effects of high-dose atorvastatin on Antiinflammatory properties of high density lipoprotein in patients with rheumatoid arthritis: a pilot study. J Rheumatol 34(7):1459–1464

    CAS  PubMed  Google Scholar 

  21. Charles-Schoeman C, Lee YY, Shahbazian A, Gorn AH, Fitzgerald J, Ranganath VK et al (2013) Association of paraoxonase 1 gene polymorphism and enzyme activity with carotid plaque in rheumatoid arthritis. Arthritis Rheum 65(11):2765–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aviram M, Rosenblat M (2008) Paraoxonases (PON1, PON2, PON3) analyses in vitro and in vivo in relation to cardiovascular diseases. Methods Mol Biol 477:259–276

    Article  CAS  PubMed  Google Scholar 

  23. Kang LT, Phillips TM, Vanderhoek JY (1999) Novel membrane target proteins for lipoxygenase-derived mono(S)hydroxy fatty acids. Biochim Biophys Acta 1438(3):388–398

    Article  CAS  PubMed  Google Scholar 

  24. Vangaveti V, Baune BT, Kennedy RL (2010) Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab 1(2):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rothe T, Gruber F, Uderhardt S, Ipseiz N, Rossner S, Oskolkova O et al (2015) 12/15-Lipoxygenase-mediated enzymatic lipid oxidation regulates DC maturation and function. J Clin Invest 125(5):1944–1954

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF et al (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103(11):1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boers M, Dijkmans B, Gabriel S, Maradit-Kremers H, O'Dell J, Pincus T (2004) Making an impact on mortality in rheumatoid arthritis: targeting cardiovascular comorbidity. Arthritis Rheum 50(6):1734–1739

    Article  PubMed  Google Scholar 

  28. Watanabe J, Charles-Schoeman C, Miao Y, Elashoff D, Lee YY, Katselis G et al (2012) Proteomic profiling following immunoaffinity capture of HDL: association of acute phase proteins and complement factors with pro-inflammatory HDL in rheumatoid arthritis. Arthritis Rheum

  29. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G et al (2003) Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108(22):2751–2756

    Article  CAS  PubMed  Google Scholar 

  30. Khera AV, Cuchel M, de Llera-Moya M, Rodrigues A, Burke MF, Jafri K et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364(2):127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D et al (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 299(11):1265–1276

    Article  CAS  PubMed  Google Scholar 

  32. Jira W, Spiteller G, Carson W, Schramm A (1998) Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids 91(1):1–11

    Article  CAS  PubMed  Google Scholar 

  33. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M et al (2004) Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114(4):529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gheorghe KR, Korotkova M, Catrina AI, Backman L, af KE, Claesson HE et al (2009) Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res Ther 11(3):R83

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scanu A, Oliviero F, Gruaz L, Sfriso P, Pozzuoli A, Frezzato F et al (2010) High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther 12(1):R23

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bresnihan B, Gogarty M, FitzGerald O, Dayer JM, Burger D, Apolipoprotein A-I (2004) Infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production? Arthritis Res Ther 6(6):R563–R566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackness B, Hunt R, Durrington PN, Mackness MI (1997) Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17(7):1233–1238

    Article  CAS  PubMed  Google Scholar 

  38. Ananth L, Prete PE, Kashyap ML, Apolipoproteins A-I (1993) B and cholesterol in synovial fluid of patients with rheumatoid arthritis. Metabolism 42(7):803–806

    Article  CAS  PubMed  Google Scholar 

  39. Oliviero F, Sfriso P, Baldo G, Dayer JM, Giunco S, Scanu A et al (2009) Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Clin Exp Rheumatol 27(1):79–83

    CAS  PubMed  Google Scholar 

  40. Prete PE, Gurakar-Osborne A, Kashyap ML (1993) Synovial fluid lipoproteins: review of current concepts and new directions. Semin Arthritis Rheum 23(2):79–89

    Article  CAS  PubMed  Google Scholar 

  41. Myasoedova E, Crowson CS, Kremers HM, Roger VL, Fitz-Gibbon PD, Therneau TM et al (2011) Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis 70(3):482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G et al (2002) Oral administration of an Apo A-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105(3):290–292

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Charles-Schoeman received support from the NHLBI (5K23HL094834, R01HL123064). Dr. Reddy received support from NHLBI (HL-82823 and HL-71776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Charles-Schoeman.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charles-Schoeman, C., Meriwether, D., Lee, Y.Y. et al. High levels of oxidized fatty acids in HDL are associated with impaired HDL function in patients with active rheumatoid arthritis. Clin Rheumatol 37, 615–622 (2018). https://doi.org/10.1007/s10067-017-3896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3896-y

Keywords

Navigation