Clinical Rheumatology

, Volume 36, Issue 11, pp 2403–2414 | Cite as

Pristane-induced lupus: considerations on this experimental model

  • Eduarda Correa Freitas
  • Mayara Souza de Oliveira
  • Odirlei André Monticielo
Review Article
  • 269 Downloads

Abstract

Systemic lupus erythematosus (SLE) is a multifactorial, autoimmune inflammatory disease with pleomorphic clinical manifestations involving different organs and tissues. The etiology of this disease has been associated with a dysfunctional response of B and T lymphocytes against environmental stimuli in individuals genetically susceptible to SLE, which determines an immune response against different autoantigens and, consequently, tissue damage. The study of different murine models has provided a better understanding of these autoimmune phenomena. This review primarily focuses on that has been learned from the pristane-induced lupus (PIL) model and how this model can be used to supplement recent advances in understanding the pathogenesis of SLE. We also consider both current and future therapies for this disease. The PubMed, SciELO, and Embase databases were searched for relevant articles published from 1950 to 2016. PIL has been shown to be a useful tool for understanding the multiple mechanisms involved in systemic autoimmunity. In addition, it can be considered an efficient model to evaluate the environmental contributions and interferon signatures present in patients with SLE.

Keywords

Animal model Lupus Pristane Pristane-induced lupus Systemic lupus erythematosus 

Notes

Financial support

Funding for this study was provided by the Research and Event Incentive Fund (FIPE-HCPA).

Compliance with ethical standards

Disclosure

None.

References

  1. 1.
    Arbuckle MR, McClain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533.  https://doi.org/10.1056/NEJMoa021933 PubMedCrossRefGoogle Scholar
  2. 2.
    Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277PubMedCrossRefGoogle Scholar
  3. 3.
    Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939.  https://doi.org/10.1056/NEJMra071297 PubMedCrossRefGoogle Scholar
  4. 4.
    Burlingame RW, Rubin RL (1991) Drug-induced anti-histone autoantibodies display two patterns of reactivity with substructures of chromatin. J Clin Invest 88:680–690.  https://doi.org/10.1172/JCI115353 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Griem P, Gleichmann E (1995) Metal ion induced autoimmunity. Curr Opin Immunol 7:831–838.  https://doi.org/10.1016/0952-7915(95)80056-5 PubMedCrossRefGoogle Scholar
  6. 6.
    Woosley RL, Drayer DE, Reidenberg MM et al (1978) Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. N Engl J Med 298:1157–1159.  https://doi.org/10.1056/NEJM197805252982101 PubMedCrossRefGoogle Scholar
  7. 7.
    Satoh M, Reeves WH (1994) Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 180:2341–2346.  https://doi.org/10.1084/jem.180.6.2341 PubMedCrossRefGoogle Scholar
  8. 8.
    Satoh M, Shaheen VM, Kao PN et al (1999) Autoantibodies define a family of proteins with conserved double- stranded RNA-binding domains as well as DNA binding activity. J Biol Chem 274:34598–34604.  https://doi.org/10.1074/jbc.274.49.34598 PubMedCrossRefGoogle Scholar
  9. 9.
    Elkon KB, Bonfa E, Brot N (1992) Antiribosomal antibodies in systemic lupus erythematosus. Rheum Dis Clin N Am 18:377–390Google Scholar
  10. 10.
    Hamilton KJ, Satoh M, Swartz J et al (1998) Influence of microbial stimulation on hypergammaglobulinemia and autoantibody production in pristane-induced lupus. Clin Immunol Immunopathol 86:271–279PubMedCrossRefGoogle Scholar
  11. 11.
    Reeves WH, Lee PY, Weinstein JS et al (2010) Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol 30:455–464.  https://doi.org/10.1016/j.it.2009.06.003.Induction CrossRefGoogle Scholar
  12. 12.
    Avigan J, Blumer M (1968) On the origin of pristane in marine organisms. J Lipid Res 9:350–352PubMedGoogle Scholar
  13. 13.
    Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 127:1591–1595PubMedGoogle Scholar
  14. 14.
    Satoh M, Kumar A, Kanwar YS, Reeves WH (1995) Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci 92:10934–10938.  https://doi.org/10.1073/pnas.92.24.10934 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Janz S, Shacter E (1991) A new method for delivering alkanes to mammalian cells: preparation and preliminary characterization of an inclusion complex between beta-cyclodextrin and pristane (2,6,10,14-tetramethylpentadecane). Toxicology 69:301–315PubMedCrossRefGoogle Scholar
  16. 16.
    White S, Rosen A (2003) Apoptosis in systemic lupus erythematosus. Curr Opin Rheumatol 15:557–562PubMedCrossRefGoogle Scholar
  17. 17.
    Calvani N, Caricchio R, Tucci M et al (2005) Induction of apoptosis by the hydrocarbon oil pristane: implications for pristane-induced lupus. J Immunol 175:4777–4782PubMedCrossRefGoogle Scholar
  18. 18.
    Nacionales DC, Kelly-Scumpia KM, Lee PY et al (2007) Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis Rheum 56:3770–3783.  https://doi.org/10.1002/art.23023 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mitani Y, Takaoka A, Kim SH et al (2001) Cross talk of the interferon-alpha/beta signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 6:631–640PubMedCrossRefGoogle Scholar
  20. 20.
    Richards HB, Satoh M, Jennette JC et al (2001) Interferon-γ is required for lupus nephritis in mice treated with the hydrocarbon oil pristane. Kidney Int 60:2173–2180.  https://doi.org/10.1046/j.1523-1755.2001.00045.x PubMedCrossRefGoogle Scholar
  21. 21.
    Richards HB, Satoh M, Shaw M et al (1998) Interleukin 6 dependence of anti-DNA antibody production: evidence for two pathways of autoantibody formation in pristane-induced lupus. J Exp Med 188:985–990.  https://doi.org/10.1084/jem.188.5.985 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Calvani N, Satoh M, Croker BP et al (2003) Nephritogenic autoantibodies but absence of nephritis in Il-12p35-deficient mice with pristane-induced lupus. Kidney Int 64:897–905.  https://doi.org/10.1046/j.1523-1755.2003.00178.x PubMedCrossRefGoogle Scholar
  23. 23.
    MAGRAM J, SFARRA J, CONNAUGHTON S et al (1996) IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann N Y Acad Sci 795:60–70.  https://doi.org/10.1111/j.1749-6632.1996.tb52655.x PubMedCrossRefGoogle Scholar
  24. 24.
    Okamura H, Tsutsui H, Komatsu T et al (1995) Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378:88–91.  https://doi.org/10.1038/378088a0 PubMedCrossRefGoogle Scholar
  25. 25.
    Smeltz RB, Chen J, Hu-Li J, Shevach EM (2001) Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4(+) T cells during T helper (Th)1/Th2 differentiation. Critical downregulatory role of IL-4. J Exp Med 194:143–153PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci 100:2610–2615.  https://doi.org/10.1073/pnas.0337679100 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bennett L, Palucka AK, Arce E et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197:711–723.  https://doi.org/10.1084/jem.20021553 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhuang H, Narain S, Sobel E et al (2005) Association of anti-nucleoprotein autoantibodies with upregulation of type I interferon-inducible gene transcripts and dendritic cell maturation in systemic lupus erythematosus. Clin Immunol 117:238–250.  https://doi.org/10.1016/j.clim.2005.07.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Feng X, Wu H, Grossman JM et al (2006) Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum 54:2951–2962.  https://doi.org/10.1002/art.22044 PubMedCrossRefGoogle Scholar
  30. 30.
    Kirou KA, Lee C, George S et al (2005) Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 52:1491–1503.  https://doi.org/10.1002/art.21031 PubMedCrossRefGoogle Scholar
  31. 31.
    Pascual V, Farkas L, Banchereau J (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 18:676–682.  https://doi.org/10.1016/j.coi.2006.09.014 PubMedCrossRefGoogle Scholar
  32. 32.
    Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392.  https://doi.org/10.1016/j.immuni.2006.08.010 PubMedCrossRefGoogle Scholar
  33. 33.
    Nacionales DC, Kelly KM, Lee PY et al (2006) Type I interferon production by tertiary lymphoid tissue developing in response to 2,6,10,14-tetramethyl-pentadecane (pristane). Am J Pathol 168:1227–1240.  https://doi.org/10.2353/ajpath.2006.050125 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Thibault DL, Graham KL, Lee LY et al (2009) Type I interferon receptor controls B-cell expression of nucleic acid-sensing toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res Ther 11:R112.  https://doi.org/10.1186/ar2771 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lee PY, Weinstein JS, Nacionales DC et al (2008) A novel type I IFN-producing cell subset in murine lupus. J Immunol 180:5101–5108PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Båve U, Magnusson M, Eloranta M-L et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171:3296–3302PubMedCrossRefGoogle Scholar
  37. 37.
    Swirski FK, Libby P, Aikawa E et al (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205.  https://doi.org/10.1172/JCI29950 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137.  https://doi.org/10.1038/ni1303 PubMedCrossRefGoogle Scholar
  39. 39.
    Means TK, Latz E, Hayashi F et al (2005) Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115:407–417.  https://doi.org/10.1172/JCI23025 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Savarese E (2006) U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107:3229–3234.  https://doi.org/10.1182/blood-2005-07-2650 PubMedCrossRefGoogle Scholar
  41. 41.
    Vollmer J, Tluk S, Schmitz C et al (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves toll-like receptors 7 and 8. J Exp Med 202:1575–1585.  https://doi.org/10.1084/jem.20051696 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gilliet M, Cao W, Liu Y-J (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606.  https://doi.org/10.1038/nri2358 PubMedCrossRefGoogle Scholar
  43. 43.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995.  https://doi.org/10.1038/ni1112 PubMedCrossRefGoogle Scholar
  44. 44.
    Lee PY, Kumagai Y, Li Y et al (2008) TLR7-dependent and FcgammaR-independent production of type I interferon in experimental mouse lupus. J Exp Med 205:2995–3006.  https://doi.org/10.1084/jem.20080462 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Savarese E, Steinberg C, Pawar RD et al (2008) Requirement of toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum 58:1107–1115.  https://doi.org/10.1002/art.23407 PubMedCrossRefGoogle Scholar
  46. 46.
    Ewald SE, Barton GM (2011) Nucleic acid sensing toll-like receptors in autoimmunity. Curr Opin Immunol 23:3–9.  https://doi.org/10.1016/j.coi.2010.11.006 PubMedCrossRefGoogle Scholar
  47. 47.
    Bly JE, Garrett LR, Cuchens MA (1990) Pristane induced changes in rat lymphocyte membrane fluidity. Cancer Biochem Biophys 11:145–154PubMedGoogle Scholar
  48. 48.
    Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250.  https://doi.org/10.1002/1529-0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H PubMedCrossRefGoogle Scholar
  49. 49.
    Barrat FJ, Meeker T, Gregorio J et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139.  https://doi.org/10.1084/jem.20050914 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vallin H, Perers A, Alm GV, Rönnblom L (1999) Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 163:6306–6313PubMedGoogle Scholar
  51. 51.
    Clynes R, Calvani N, Croker BP, Richards HB (2005) Modulation of the immune response in pristane-induced lupus by expression of activation and inhibitory Fc receptors. Clin Exp Immunol 141:230–237.  https://doi.org/10.1111/j.1365-2249.2005.02847.x PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bossaller L, Christ A, Pelka K et al (2016) TLR9 deficiency leads to accelerated renal disease and myeloid lineage abnormalities in pristane-induced murine lupus. J Immunol 197:1044–1053.  https://doi.org/10.4049/jimmunol.1501943 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zhuang H, Han S, Li Y et al (2016) A novel mechanism for generating the interferon signature in lupus: opsonization of dead cells by complement and IgM. Arthritis Rheumatol 68:2917–2928.  https://doi.org/10.1002/art.39781 PubMedCrossRefGoogle Scholar
  54. 54.
    Carlucci F, Ishaque A, Ling GS et al (2016) C1q modulates the response to TLR7 stimulation by pristane-primed macrophages: implications for pristane-induced lupus. J Immunol 196:1488–1494.  https://doi.org/10.4049/jimmunol.1401009 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Smith S, Fernando T, Wu PW et al (2017) MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J Autoimmun 79:105–111.  https://doi.org/10.1016/j.jaut.2017.03.003 PubMedCrossRefGoogle Scholar
  56. 56.
    Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44:93–151PubMedCrossRefGoogle Scholar
  57. 57.
    Satoh M, Hamilton KJ, Ajmani AK et al (1996) Autoantibodies to ribosomal P antigens with immune complex glomerulonephritis in SJL mice treated with pristane. J Immunol 157:3200–3206PubMedGoogle Scholar
  58. 58.
    Satoh M, Richards HB, Shaheen VM et al (2000) Widespread susceptibility among inbred mouse strains to the induction of lupus autoantibodies by pristane. Clin Exp Immunol 121:399–405.  https://doi.org/10.1046/j.1365-2249.2000.01276.x PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Satoh M, Treadwell EL, Reeves WH (1995) Pristane induces high titers of anti-Su and anti-nRNP/Sm autoantibodies in BALB/c mice. Quantitation by antigen capture ELISAs based on monospecific human autoimmune sera. J Immunol Methods 182:51–62.  https://doi.org/10.1016/0022-1759(95)00022-3 PubMedCrossRefGoogle Scholar
  60. 60.
    Wooley PH, Seibold JR, Whalen JD, Chapdelaine JM (1989) Pristane-induced arthritis. The immunologic and genetic features of an experimental murine model of autoimmune disease. Arthritis Rheum 32:1022–1030PubMedCrossRefGoogle Scholar
  61. 61.
    Christensen SR, Shupe J, Nickerson K et al (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428.  https://doi.org/10.1016/j.immuni.2006.07.013 PubMedCrossRefGoogle Scholar
  62. 62.
    Christensen SR, Shlomchik MJ (2007) Regulation of lupus-related autoantibody production and clinical disease by toll-like receptors. Semin Immunol 19:11–23.  https://doi.org/10.1016/j.smim.2006.12.005 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Han S, Zhuang H, Xu Y et al (2015) Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther 17:384.  https://doi.org/10.1186/s13075-015-0886-9 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lu A, Li H, Niu J et al (2017) Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J Immunol 198:1119–1129.  https://doi.org/10.4049/jimmunol.1600659 PubMedCrossRefGoogle Scholar
  65. 65.
    Kahlenberg JM, Yalavarthi S, Zhao W et al (2014) An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheumatol 66:152–162.  https://doi.org/10.1002/art.38225 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Morse MD, Clark KL, Cascalho M, Kahlenberg JM (2016) Caspase-1 is required for maintenance of marginal zone B cells in pristane-induced lupus. Lupus 25:81–87.  https://doi.org/10.1177/0961203315606982 PubMedCrossRefGoogle Scholar
  67. 67.
    Mizutani A, Shaheen VM, Yoshida H et al (2005) Pristane-induced autoimmunity in germ-free mice. Clin Immunol 114:110–118.  https://doi.org/10.1016/j.clim.2004.09.010 PubMedCrossRefGoogle Scholar
  68. 68.
    Richards, Satoh, Jennette et al (1999) Disparate T cell requirements of two subsets of lupus-specific autoantibodies in pristane-treated mice. Clin Exp Immunol 115:547–553.  https://doi.org/10.1046/j.1365-2249.1999.00825.x PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nacionales DC, Weinstein JS, Yan X-J et al (2009) B cell proliferation, somatic hypermutation, class switch recombination, and autoantibody production in ectopic lymphoid tissue in murine lupus. J Immunol 182:4226–4236.  https://doi.org/10.4049/jimmunol.0800771 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Levitt NG, Fernandez-Madrid F, Wooley PH (1992) Pristane induced arthritis in mice. IV Immunotherapy with monoclonal antibodies directed against lymphocyte subsets. J Rheumatol 19:1342–1347PubMedGoogle Scholar
  71. 71.
    Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472PubMedCrossRefGoogle Scholar
  72. 72.
    Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217.  https://doi.org/10.1038/nri1786 PubMedCrossRefGoogle Scholar
  73. 73.
    Jego G, Palucka AK, Blanck J-P et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19:225–234PubMedCrossRefGoogle Scholar
  74. 74.
    Sverdrup B, Källberg H, Bengtsson C et al (2005) Association between occupational exposure to mineral oil and rheumatoid arthritis: results from the Swedish EIRA case-control study. Arthritis Res Ther 7:R1296–303.  https://doi.org/10.1186/ar1824
  75. 75.
    Dahlgren J, Takhar H, Anderson-Mahoney P et al (2007) Cluster of systemic lupus erythematosus (SLE) associated with an oil field waste site: a cross sectional study. Environ Health 6:8.  https://doi.org/10.1186/1476-069X-6-8 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kuroda Y, Nacionales DC, Akaogi J et al (2004) Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother 58:325–337.  https://doi.org/10.1016/j.biopha.2004.04.009 PubMedCrossRefGoogle Scholar
  77. 77.
    Smith DL, Dong X, Du S et al (2007) A female preponderance for chemically induced lupus in SJL/J mice. Clin Immunol 122:101–107.  https://doi.org/10.1016/j.clim.2006.09.009 PubMedCrossRefGoogle Scholar
  78. 78.
    Pistiner M, Wallace DJ, Nessim S et al (1991) Lupus erythematosus in the 1980s: a survey of 570 patients. Semin Arthritis Rheum 21:55–64.  https://doi.org/10.1016/0049-0172(91)90057-7 PubMedCrossRefGoogle Scholar
  79. 79.
    Chowdhary VR, Grande JP, Luthra HS, David CS (2007) Characterization of haemorrhagic pulmonary capillaritis: another manifestation of pristane-induced lupus. Rheumatology 46:1405–1410.  https://doi.org/10.1093/rheumatology/kem117 PubMedCrossRefGoogle Scholar
  80. 80.
    Koffler D, Agnello V, Thoburn R, Kunkel HG (1971) Systemic lupus erythematosus: prototype of immune complex nephritis in man. J Exp Med 134:169–179PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kulkarni O, Pawar RD, Purschke W et al (2007) Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol 18:2350–2358.  https://doi.org/10.1681/ASN.2006121348 PubMedCrossRefGoogle Scholar
  82. 82.
    Zhuang H, Han S, Xu Y et al (2014) Toll-like receptor 7-stimulated tumor necrosis factor alpha causes bone marrow damage in systemic lupus erythematosus. Arthritis Rheumatol 66:140–151.  https://doi.org/10.1002/art.38189 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chen X, Cui L, Li R et al (2016) Development of pristane induced mice model for lupus with atherosclerosis and analysis of TLR expression. Clin Exp Rheumatol 34:600–608PubMedGoogle Scholar
  84. 84.
    Kamen DL, Strange C (2010) Pulmonary manifestations of systemic lupus erythematosus. Clin Chest Med 31:479–488.  https://doi.org/10.1016/j.ccm.2010.05.001 PubMedCrossRefGoogle Scholar
  85. 85.
    Zamora MR, Warner ML, Tuder R, Schwarz MI (1997) Diffuse alveolar hemorrhage and systemic lupus erythematosus. Clinical presentation, histology, survival, and outcome. Medicine (Baltimore) 76:192–202CrossRefGoogle Scholar
  86. 86.
    Satoh M, Weintraub JP, Yoshida H et al (2000) Fas and Fas ligand mutations inhibit autoantibody production in pristane-induced lupus. J Immunol 165:1036–1043PubMedCrossRefGoogle Scholar
  87. 87.
    Barker T, Lee P, Kelly-Scumpia K et al (2011) Pathogenic role of B cells in the development of diffuse alveolar hemorrhage induced by pristane. Lab Investig 91:1540–1550.  https://doi.org/10.1038/labinvest.2011.108 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhuang H, Han S, Lee PY et al (2017) Pathogenesis of diffuse alveolar hemorrhage in murine lupus. Arthritis Rheumatol 69:1280–1293.  https://doi.org/10.1002/art.40077 PubMedCrossRefGoogle Scholar
  89. 89.
    Fernandez S, Jose P, Avdiushko MG et al (2004) Inhibition of IL-10 receptor function in alveolar macrophages by toll-like receptor agonists. J Immunol 172:2613–2620.  https://doi.org/10.4049/jimmunol.172.4.2613 PubMedCrossRefGoogle Scholar
  90. 90.
    Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14:81–93.  https://doi.org/10.1038/nri3600 PubMedCrossRefGoogle Scholar
  91. 91.
    Murray PJ, Smale ST (2012) Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat Immunol 13:916–924.  https://doi.org/10.1038/ni.2391 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ioannou Y, Isenberg DA (2000) Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum 43:1431–1442.  https://doi.org/10.1002/1529-0131(200007)43:7<1431::AID-ANR3>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  93. 93.
    Rönnblom LE, Alm GV, Oberg KE (1991) Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med 115:178–183PubMedCrossRefGoogle Scholar
  94. 94.
    Zhou L, Wei W, Si J, Yuan D (2010) Regulatory effect of melatonin on cytokine disturbances in the pristane-induced lupus mice. Mediat Inflamm 2010:1–7.  https://doi.org/10.1155/2010/951210 Google Scholar
  95. 95.
    Minhas U, Minz R, Das P, Bhatnagar A (2012) Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology 20:195–205.  https://doi.org/10.1007/s10787-011-0102-8 PubMedCrossRefGoogle Scholar
  96. 96.
    Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985.  https://doi.org/10.1096/fj.03-0168rev PubMedCrossRefGoogle Scholar
  97. 97.
    Wang Z-L, Luo X-F, Li M-T et al (2014) Resveratrol possesses protective effects in a pristane-induced lupus mouse model. PLoS One 9:e114792.  https://doi.org/10.1371/journal.pone.0114792 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Li M, Shi X, Qian T et al (2015) A20 overexpression alleviates pristine-induced lupus nephritis by inhibiting the NF-κB and NLRP3 inflammasome activation in macrophages of mice. Int J Clin Exp Med 8:17430–17440PubMedPubMedCentralGoogle Scholar
  99. 99.
    Opipari AW, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265:14705–14708PubMedGoogle Scholar
  100. 100.
    Bender AT, Pereira A, Fu K et al (2016) Btk inhibition treats TLR7/IFN driven murine lupus. Clin Immunol 164:65–77.  https://doi.org/10.1016/j.clim.2016.01.012 PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang D, Liu R, Sun L et al (2011) Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 16:3875–3884.  https://doi.org/10.3390/molecules16053875 PubMedCrossRefGoogle Scholar
  102. 102.
    He Y-Y, Yan Y, Zhang H-F et al (2016) Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des Devel Ther 10:3183–3196.  https://doi.org/10.2147/DDDT.S114501 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lin Y, Yan Y, Zhang H et al (2017) Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice. Acta Pharm Sin B 7:159–166.  https://doi.org/10.1016/j.apsb.2016.07.001 PubMedCrossRefGoogle Scholar
  104. 104.
    Lim LHK, Pervaiz S (2007) Annexin 1: the new face of an old molecule. FASEB J 21:968–975.  https://doi.org/10.1096/fj.06-7464rev PubMedCrossRefGoogle Scholar
  105. 105.
    Mihaylova N, Bradyanova S, Chipinski P, et al (2017) Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus. Autoimmunity 0:1–12. doi:  https://doi.org/10.1080/08916934.2017.1300884

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  • Eduarda Correa Freitas
    • 1
  • Mayara Souza de Oliveira
    • 1
  • Odirlei André Monticielo
    • 1
  1. 1.Laboratory of Autoimmune Diseases, Division of Rheumatology, Hospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations