Skip to main content

Advertisement

Log in

Polymorphic variants of antioxidative defense enzymes and their gene-gene epistatic interactions in systemic lupus erythematode patients

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which pathogenesis oxidative stress has an important role. Single nucleotide polymorphisms (SNPs) in the genes that code enzymes involved in the antioxidative defense are possible factors that are responsible for their decreased activity of antioxidative defense enzymes. Thus, the aim of the study was to examine association of SNPs in these genes with SLE. A total of176 subjects were involved in this study. CAT A-21T (rs7943316), CAT C-262T (rs1001139) and manganese SOD (MnSOD) Ala16Val (rs4880) SNPs were determined using PCR-RFLP method, while GSTT1 and GSTM1 were determined using multiplex PCR. The obtained results showed significant differences in the distribution of genotypes (df = 2; p = 0.001) and alleles (p < 0.001; OR = 2.227; 95% CI = 1.429–3.741) of rs4880 between patients and controls. MnSODValVal genotype showed association with neurologic manifestations (p = 0.016; OR = 6.7; 95% CI = 1.18–37.89), while homozygous GSTT1 showed association with musculoskeletal manifestations of SLE (p = 0.008; OR = 4.168; 95% CI = 1.364–12.737). AlaVal/T+M+ genotype combination is a high-risk genotype for SLE. SNP–SNP interaction model showed positive correlation between CAT A-21T and CAT C-262T SNPs in SLE patients which was not influenced by the linkage disequilibrium (r 2 = 0.005; D′ = 0.071). MnSODVal allele is a risk factor for SLE, as well as for SLE with neurologic manifestations, while homozygous GSTT1 genotype is a risk factor for SLE with musculoskeletal manifestations. Catalase SNPs (C-262T and A-21T) show positive correlation in the model of SNP–SNP interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365:2110–2121

    Article  CAS  PubMed  Google Scholar 

  2. Nath SK, Kilpatrick J, Harley JB (2004) Genetics of human systemic lupus erythematosus: the emerging picture. Curr Opin Immunol 16:794–800

    Article  CAS  PubMed  Google Scholar 

  3. Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM, Norris JM, De Roos AJ (2012) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39(4):259–271

    Article  PubMed  PubMed Central  Google Scholar 

  4. Manson JJ, Isenberg DA (2003) The pathogenesis of systemic lupus erythematosus. Neth J Med 61:343–346

    CAS  PubMed  Google Scholar 

  5. Oates JC, Farrelly LW, Hofbauer AF, Wang W, Gilkeson GS (2007) Association of reactive oxygen and nitrogen intermediate and complement levels with apoptosis of peripheral blood mononuclear cells in lupus patients. Arthritis Rheum 56(11):3738–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bae SC, Kim SJ, Sung MK (2002) Impaired antioxidant status and decreased dietary intake of antioxidants in patients with systemic lupus erythematosus. Rheumatol Int 22(6):238–243

    Article  CAS  PubMed  Google Scholar 

  7. Zaieni SH, Derakhshan Z, Sariri R (2015) Alternations of salivary antioxidant enzymes in systemic lupus erythematosus. Lupus 24(13):1400–1405

    Article  CAS  PubMed  Google Scholar 

  8. Bastaki M, Huen K, Manzanillo P, Chande N, Chen C, Balmes JR, Tager IB, Holland N (2006) Genotype activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16(4):279–286

    Article  CAS  PubMed  Google Scholar 

  9. Pourvali K, Abbasi M, Mottaghi A (2016) Role of superoxide dismutase 2 gene Ala16Val polymorphism and total antioxidant capacity in diabetes and its complications. Avicenna J Med Biotechnol 8(2):48–56

    PubMed  PubMed Central  Google Scholar 

  10. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizino Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. Biochem Biophys Res Commun 226:561–565

    Article  CAS  PubMed  Google Scholar 

  11. Ventriglia M, BocchioChiavetto L, Scassellati C, Squitti R, Binetti G, Ghidoni R, Rossini PM, Gennarelli M (2005) Lack of association between MnSOD gene polymorphism and sporadic Alzheimer’s disease. Aging Clin Exp Res 17(6):445–448

    Article  CAS  PubMed  Google Scholar 

  12. Akyol O, Yanik M, Elyas H, Namli M, Canatan H, Akin H, Yuce H, Yilmaz HR, Tutkun H, Sogut S, Herken H, Özyurt H, Savas HA, Zoruglu SS (2005) Association between Ala-9-Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:123–131

    Article  CAS  PubMed  Google Scholar 

  13. Arsova-Sarafinovska Z, Matevska N, Petrovski D, Banev S, Dzikova S, Georgiev V, Sikole A, Sayal A, Aydin A, Suturkova L, Dimovski AJ (2008) Manganese superoxide dismutase (MnSOD) genetic polymorphism is associated with risk of early-onset prostate cancer. Cell Biochem Funct 26(7):771–777

    Article  CAS  PubMed  Google Scholar 

  14. Holla LI, Kankova K, Vasku A (2006) Functional polymorphism in the manganese superoxide dismutase (MnSOD) gene in patients with asthma. Clin Biochem 39(3):299–302

    Article  CAS  PubMed  Google Scholar 

  15. Kodydková J, Vávrová L, Kocík M, Žák A (2014) Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol 60:153–167

    Google Scholar 

  16. Kim TH, Hong JM, Oh B, Cho YS, Lee JY, Kim HL et al (2008) Genetic association study of polymorphisms in the catalase gene with the risk of osteonecrosis of the femoral head in the Korean population. Osteoarthr Cartil 16(9):1060–1066

    Article  PubMed  Google Scholar 

  17. Liu L, Li C, Gao J, Li K, Zhang R, Wang G et al (2010) Promotor variant in the catalase gene is associated with vitiligo in Chinese people. J Investig Dermatol 130(11):2674–2653

    Article  PubMed  Google Scholar 

  18. Barnes PJ (1990) Reactive oxygen species and airway inflammation. Free Radic Biol Med 9:235–243

    Article  CAS  PubMed  Google Scholar 

  19. Ryberg D, Skaug V, Hewer A et al (1997) Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18:1285–1289

    Article  CAS  PubMed  Google Scholar 

  20. Bruhn C, Brockmoller J, Kerb R, Roots I, Borchert HH (1998) Concordance between enzyme activity and genotype of glutathione S-transferase theta (GSTT1). Biochem Pharmacol 56:1189–1193

    Article  CAS  PubMed  Google Scholar 

  21. Nelson HH, Wiencke JK, Christiani DC et al (1995) Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis 16:1243–1245

    Article  CAS  PubMed  Google Scholar 

  22. Curk T, Rot G, Zupan B (2011) SNPsyn: detection and exploration of SNP-SNP interactions. Nucleic Acids Res 39(Web Server issue):W444–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  CAS  PubMed  Google Scholar 

  25. Shah D, Kiran R, Wanchu A, Bhatnagar A (2010) Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett 129:7–12

    Article  CAS  PubMed  Google Scholar 

  26. Mansour RB, Lassoued S, Gargouri B, El Gaid A, Attia H, Fakhfakh F (2008) Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 37:103–108

    Article  PubMed  Google Scholar 

  27. BohanecGrabar P, Logar D, Tomsic M, Rozman B, Dolzan V (2009) Genetic polymorphisms modifying oxidative stress are associated with disease activity in rheumatoid arthritis patients. Dis Markers 26:41–48

    Article  CAS  Google Scholar 

  28. Yang LL, Huang MS, Huang CC, Wang TH, Lin MC, Wu CC et al (2011) The association between adult asthma and superoxide dismutase and catalase gene activity. Int Arch Allergy Immunol 156(4):373–380

    Article  CAS  PubMed  Google Scholar 

  29. Mak JC, Leung HC, Ho SP, Ko FW, Cheung AH, Ip MS et al (2006) Polymorphisms in manganese superoxide dismutase and catalase genes: functional study in Hong Kong Chinese asthma patients. Clin Exp Allergy 36(4):440–447

    Article  CAS  PubMed  Google Scholar 

  30. Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13:145–157

    Article  CAS  PubMed  Google Scholar 

  31. Sobkowiak A, Lianeri M, Wudarski M, Lacki JK, Jagodzinski PP (2008) Manganese superoxide dismutase Ala-9Val mitochondrial targeting sequence polymorphism in systemic lupus erythematosus in Poland. Clin Rheumatol 27:827–831

    Article  PubMed  Google Scholar 

  32. Warchoł T, Lianeri M, Wudarski M, Łacki JK, Jagodziński PP (2008) Catalase-262C/T polymorphism in systemic lupus erythematosus in Poland. Rheumatol Int 28(10):1035–1039

    Article  PubMed  Google Scholar 

  33. Ghaly MS, Ghattas MH, Labib SM (2012) Association of catalase gene polymorphisms with catalase activity and susceptibility to systemic lupus erythematosus in the Suez Canal area, Egypt. Lupus 21(11):1244–1249

    Article  CAS  PubMed  Google Scholar 

  34. Eny KM, El-Sohemy A, Cornelis MC, Sung YK, Bae SC (2005) Catalase and PPARgamma2 genotype and risk of systemic lupus erythematosus in Koreans. Lupus 14(5):351–355

    Article  CAS  PubMed  Google Scholar 

  35. Ukkola O, Erkkilä PH, Savolainen MJ, Kesän YA (2001) Lack of association between polymorphisms of catalase, copper-zinc superoxide dismutase (SOD), extracellular SOD and endothelial nitric oxide synthase genes and macroangiopathy in patients with type 2 diabetes mellitus. J Intern Med 249(5):451–459

    Article  CAS  PubMed  Google Scholar 

  36. Lourdhu Mary A, Nithya K, Isabel W, Angeline T (2014) Prevalence of catalase (-21 A/T) gene variant in south Indian (Tamil) population. Biomed Res Int 2014:894237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Polonikov AV, Ivanov VP, Solodilova MA, Kozhuhov MA, Panfilov VI (2009) Tobacco smoking, fruit and vegetable intake modify association between −21 a>T polymorphism of catalase gene and risk of bronchial asthma. J Asthma 46(3):217–224

    Article  CAS  PubMed  Google Scholar 

  38. Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW (1993) Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85:1159–1164

    Article  CAS  PubMed  Google Scholar 

  39. Kang TY, El-Sohemy A, Comelis MC, Eny KM, Bae SC (2005) Glutathione S-transferase genotype and risk of systemic lupus erythematosus in Koreans. Lupus 14(5):381–384

    Article  CAS  PubMed  Google Scholar 

  40. Fraser PA, Ding WZ, Mohseni M et al (2003) Glutathione S-transferase M null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene-environment interaction for autoimmunity. J Rheumatol 30:276–282

    CAS  PubMed  Google Scholar 

  41. Tew MB, Ahn CW, Friedman AW et al (2001) Systemic lupus erythematosus in three ethnic groups. VIII. Lack of association of glutathione S-transferase null alleles with disease manifestations. Arthritis Rheum 44:981–983

    Article  CAS  PubMed  Google Scholar 

  42. Horiuchi T, Washio M, Kiyohara C, Tsukamoto H, Tada Y, Asami T, Ide S, Kobashi G, Takahashi H, Kyushu Sapporo SLE Study Group (2009) Combination of TNF-RII, CYP1A1 and GSTM1 polymorphisms and the risk of Japanese SLE: findings from the KYSS study. Rheumatology (Oxford) 48(9):1045–1049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (grant number III41018, 2011–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Jevtovic Stoimenov.

Ethics declarations

All subjects signed an informed consent prior to inclusion in the study. The study was approved by the Ethical Committee of the Faculty of Medicine, University of Nis, Serbia. The research was conducted at the Laboratory for Functional Genomics and Proteomics, Faculty of Medicine, University of Nis, Serbia, according to the guidelines of the Declaration of Helsinki and the good laboratory practice.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jevtovic Stoimenov, T., Despotovic, M., Stojanovic, S. et al. Polymorphic variants of antioxidative defense enzymes and their gene-gene epistatic interactions in systemic lupus erythematode patients. Clin Rheumatol 36, 2019–2026 (2017). https://doi.org/10.1007/s10067-017-3755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3755-x

Keywords

Navigation