Skip to main content

Advertisement

Log in

Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis?

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Previous in vitro studies have shown that oxidized low-density lipoprotein (ox-LDL) plays a role in the pathogenesis of osteoarthritis (OA). Paraoxonase-1 (PON1) protects both low-density lipoproteins (LDLs) and high-density lipoprotein (HDLs) against oxidative damage from circulating cells. In addition, PON1 is inactivated by ox-LDL and preserved by antioxidants. However, the relationship between serum ox-LDL, oxidative stress, and PON1 in knee OA remains unclear. Therefore, we investigated ox-LDL association with oxidative stress and PON1 in knee OA, and evaluated their relationships using radiological and clinical parameters. This study included 203 patients and 194 controls. The severity of OA was classified based on the Kellgren–Lawrence scoring system. In addition, each patient was clinically evaluated using the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score. Plasma concentrations of ox-LDL, oxidative stress markers, and PON1 were measured. Serum ox-LDL and oxidant parameters were significantly higher in patients compared to controls (p < 0.001 for all), whereas PON1 was significantly lower (p < 0.001). ox-LDL was inversely correlated with PON1, whereas it was positively correlated with radiographic severity, WOMAC score, and oxidant parameters. We found an association between the levels of various serum markers of oxidative injury, especially ox-LDL, and increasing severity of knee OA, as well as indirect evidence for their regulation by PON1. oxLDL seems to play a critical role in OA, both in the beginning, and during progression of, the disease. Therefore, serum oxLDL levels may be a helpful biomarker to evaluate the severity of knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tiku ML, Shah R, Allison GT (2000) Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 275(26):20069–20076

    Article  CAS  PubMed  Google Scholar 

  2. Kishimoto H, Akagi M, Zushi S et al (2010) Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthr Cartil 18(10):1284–1290

    Article  CAS  PubMed  Google Scholar 

  3. de Munter W, Blom AB, Helsen MM et a (2013). Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther 15(6):R178. doi: 10.1186/ar4367.

  4. Nishimura S, Akagi M, Yoshida K et al (2004) Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappaB. Osteoarthr Cartil 12(7):568–576

    Article  PubMed  Google Scholar 

  5. Mazière C, Mazière JC (2009) Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radic Biol Med 46(2):127–137

    Article  PubMed  Google Scholar 

  6. Matsuura E, Hughes GR, Khamashta MA (2008) Oxidation of LDL and its clinical implication. Autoimmun Rev 7(7):558–566

    Article  CAS  PubMed  Google Scholar 

  7. Trpkovic A, Resanovic I, Stanimirovic J et al (2015) Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 52(2):70–85

    Article  CAS  PubMed  Google Scholar 

  8. Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13(1):39–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gkretsi V, Simopoulou T, Tsezou A (2011) Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog Lipid Res 50:133–140

    Article  CAS  PubMed  Google Scholar 

  10. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 4:576–591

    Article  Google Scholar 

  11. Ertürk C, Altay MA, Selek S et al (2012) Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest 72:433–439

    Article  PubMed  Google Scholar 

  12. Aviram M, Rosenblat M (2004) Paraoxonases 1, 2, and 3,oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Rad Bio Med 37(9): 1304–1316.

  13. Loued S, Isabelle M, Berrougui H et al (2012) The anti-inflammatory effect of paraoxonase 1 against oxidized lipids depends on its association with high density lipoproteins. Life Sci 90(1–2):82–88

    Article  CAS  PubMed  Google Scholar 

  14. García-Heredia A, Marsillach J, Rull A et al (2013) Paraoxonase-1 inhibits oxidized low-density lipoprotein-induced metabolic alterations and apoptosis in endothelial cells: a nondirected metabolomic study. Mediators Inflamm :156053.

  15. Aviram M, Rosenblat M, Billecke S et al (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 26(7–8):892–904

    Article  CAS  PubMed  Google Scholar 

  16. Aviram M, Kaplan M, Rosenblat M (2005) Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Handb Exp Pharmacol 170:263–300

    Article  CAS  Google Scholar 

  17. Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic criteria Committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049

    Article  CAS  PubMed  Google Scholar 

  18. Ertürk C, Altay MA, Altay N (2016) Will a single periarticular lidocaine-corticosteroid injection improve the clinical efficacy of intraarticular hyaluronic acid treatment of symptomatic knee osteoarthritis? Knee Surg Sports Traumatol Arthrosc 24(11):3653–3660

    Article  PubMed  Google Scholar 

  19. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellamy N, Buchanan WW, Goldsmith CH et al (1957) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    Google Scholar 

  21. Kurban S, Mehmetoglu I (2010) Effects of acetylsalicylic acid on serum paraoxonase activity, ox-LDL, coenzyme Q10 and other oxidative stress markers in healthy volunteers. Clin Biochem 43(3):287–290

    Article  CAS  PubMed  Google Scholar 

  22. Altay MA, Ertürk C, Bilge A et al (2015) Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int 35(10):1725–1731

    Article  CAS  PubMed  Google Scholar 

  23. Altay MA, Ertürk C, Levent A (2016) Çetin BV, Aksoy N. Serum prolidase activity and oxidative-antioxidative status in patients with developmental dysplasia of the hip and its relationship with radiographic severity. Redox Rep 20:1–8. doi:10.1080/13510002.2016.1196873

    Google Scholar 

  24. Meisinger C, Baumert J, Khuseyinova N et al (2005) Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 112(5):651–657

    Article  CAS  PubMed  Google Scholar 

  25. Roy Chowdhury SK, Sangle GV, Xie X (2010) Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells. Am J Physiol Endocrinol Metab 298(1):E89–E98

    Article  PubMed  Google Scholar 

  26. Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther 25(5):419–429

    Article  CAS  PubMed  Google Scholar 

  27. Hong D, Bai YP, Gao HC et al (2014) Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 2:310–317

    Article  Google Scholar 

  28. Villalvilla A, Gómez R, Largo R et al (2013) Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 14(10):20793–20808

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21(1):16–21

    Article  CAS  PubMed  Google Scholar 

  30. Mehta JL, Chen J, Hermonat PL et al (2006) Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69(1):36–45

    Article  CAS  PubMed  Google Scholar 

  31. Simopoulou T, Malizos KN, Tsezou A (2007) Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes. Clin Exp Rheumatol 25(4):605–612

    CAS  PubMed  Google Scholar 

  32. Cillero-Pastor B, Eijkel G, Kiss A et al (2012) Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal Chem 84(21):8909–8916

    Article  CAS  PubMed  Google Scholar 

  33. Kosinska MK, Liebisch G, Lochnit G et al (2013) A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum 65(9):2323–2333

    Article  CAS  PubMed  Google Scholar 

  34. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    CAS  PubMed  Google Scholar 

  35. de Farias CC, Maes M, Bonifácio KL et al (2016) Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: disease and staging biomarkers and new drug targets. Neurosci Lett 617:66–71

    Article  PubMed  Google Scholar 

  36. Mackness MI, Mackness B, Durrington PN (1996) Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 7(2):69–76

    Article  CAS  PubMed  Google Scholar 

  37. Akagi M, Kanata S, Mori S et al (2007) Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low-density lipoprotein receptor-1 system in pathogenesis and progression of human osteoarthritis. Osteoarthr Cartil 15(3):281–290

    Article  CAS  PubMed  Google Scholar 

  38. Ishijima M, Watari T, Naito K et al (2011) Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res Ther 13:R22

    Article  PubMed  PubMed Central  Google Scholar 

  39. Henrotin Y, Lambert C, Couchourel D et al (2011) Nutraceuticals: do they represent a new era in the management of osteoarthritis? - a narrative review from the lessons taken with five products. Osteoarthr Cartil 19(1):1–21

    Article  CAS  PubMed  Google Scholar 

  40. Ertürk C, Altay MA, Sert C et al (2015) The body composition of patients with knee osteoarthritis: relationship with clinical parameters and radiographic severity. Aging Clin Exp Res 27(5):673–679

    Article  PubMed  Google Scholar 

  41. Kadam UT, Blagojevic M, Belcher J (2013) Statin use and clinical osteoarthritis in the general population: a longitudinal study. J Gen Intern Med 28(7):943–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the Harran University Scientific Research Coordination Committee (2014/2/14075). The authors did not receive any outside funding or grants in support of their research, or during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Ertürk.

Ethics declarations

Disclosures

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, C., Altay, M.A., Bilge, A. et al. Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis?. Clin Rheumatol 36, 2775–2780 (2017). https://doi.org/10.1007/s10067-017-3732-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3732-4

Keywords

Navigation