Skip to main content
Log in

Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-α in knee osteoarthritis patients

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Knee osteoarthritis (KOA) is a common degenerative joint disease causing pain, stiffness, reduced motion, swelling, crepitus, and disability. Several inflammatory markers and cartilage degradation products can be used as biomarkers in OA. The key factors of bone metabolism in normal joint bone, dickkopf-1 (DKK1) and osteoprotegerin (OPG), interact with Wnt signaling pathway, balancing between bone absorption and bone reconstruction. TNF-α is a key inducer of DKK-1, which belongs to the family of proteins involved in joint remodeling. The present study compared the serum levels of DKK1, TNF-α, and OPG in patients with KOA and healthy controls to analyze the interrelationship and the severity of joint destruction. One hundred forty-eight patients with KOA and 101 healthy controls were enrolled in this study. Anteroposterior knee radiographs determined the severity of the disease in the affected knee. The radiographic grading of KOA was performed by the Kellgren–Lawrence criteria. Serum levels of DKK-1, TNF-α, and OPG were estimated using the multiplex particle-based flow cytometry. Higher serum levels of OPG and TNF-α were observed in KOA than the controls; KOA patients showed a lower serum level of DKK-1, whereas the serum levels of DKK1 correlated with the progression of KOA. The serum levels of TNF-α, OPG, and DKK-1 correlated with incident KOA. In the ROC curve analysis, DKK1 levels showed 78.6% sensitivity and 40% specificity, TNF-α levels showed 74.1% sensitivity and 76.0% specificity, and OPG showed 88.1% sensitivity and 81% specificity in predicting severe KOA. In the univariate and multivariate analyses, TNF-α and OPG emerged as independent predictors of severe KOA. This study, for the first time, combined TNF-α, DKK1, and OPG as valuable biological markers in predicting the severity of KOA radiographically in the clinic. This study also supported the inflammation-induced DKK1 and OPG in OA pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Güler Uysal F, Başaran S (2009) Knee osteoarthritis. Turk J Phys Med Rehab 55(Suppl 1):1–7

    Google Scholar 

  2. Sellam J, Berenbaum F (2013) Is osteoarthritis a metabolic disease? Joint Bone Spine 80:568–573

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Hunter D, Xu J et al (2015) Metabolic triggered inflammation in osteoarthritis. Osteoarthr Cartil 23:22–30

    Article  CAS  PubMed  Google Scholar 

  4. Henrotin Y (2012) Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives[J]. Osteoarthr Cartil 20(3):215–217

    Article  CAS  PubMed  Google Scholar 

  5. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  CAS  PubMed  Google Scholar 

  6. Morvan F et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945

    Article  CAS  PubMed  Google Scholar 

  7. Tian E et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  CAS  PubMed  Google Scholar 

  8. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):15663

    Article  Google Scholar 

  9. Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H et al (2012) High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 71(4):572–574

    Article  CAS  PubMed  Google Scholar 

  10. Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M et al (2010) Evidence that dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62:150–158

    Article  CAS  PubMed  Google Scholar 

  11. Keffer J et al (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025–4031

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Simonet WS, Lacey DL, Dunstan CR, Kelley MJ, Chang MS, Luthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  13. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495

    Article  CAS  PubMed  Google Scholar 

  14. Pilichou A, Papassotiriou I, Michalakakou K, Fessatou S, Fandridis E, Papachristou G, Terpos E (2008) High levels of synovial fluid osteoprotegerin (OPG) and increased serum ratio of receptor activator of nuclear factor-kappa B ligand (RANKL) to OPG correlate with disease severity in patients with primary knee osteoarthritis. Clin Biochem 41(9):746–749

    Article  CAS  PubMed  Google Scholar 

  15. Corrado A et al (2013) RANKL/OPG ratio and DKK-1 expression in primary osteoblastic cultures from osteoarthritic and osteoporotic subjects. J Rheumatol 40(5):684–694

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu S, Asou Y, Itoh S et al (2007) Prevention of cartilage destruction with intraarticular osteoclastogenesis inhibitory factor/osteoprotegerin in a murine model of osteoarthritis. Arthritis Rheum 56:3358–3365

    Article  PubMed  Google Scholar 

  17. Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H et al (2005) Canonical Wnt signalling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  CAS  PubMed  Google Scholar 

  18. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29(8):1039–1049

    Article  CAS  PubMed  Google Scholar 

  19. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16(4):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lane NE, Nevitt MC, Lui LY, de Leon P, Corr M (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56(10):3319–3325

    Article  CAS  PubMed  Google Scholar 

  21. Honsawek S, Tanavalee A, Yuktanandana P et al (2010) Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients[J]. BMC Musculoskelet Disord 11(1):257

    Article  PubMed  PubMed Central  Google Scholar 

  22. Honsawek S, Chayanupatkul M, Tanavalee A, Sakdinakiattikoon M, Deepaisarnsakul B, Yuktanandana P, Ngarmukos S (2009) Relationship of plasma and synovial fluid BMP-7 with disease severity in knee osteoarthritis patients: a pilot study. Int Orthop 33:1171–1175

    Article  PubMed  PubMed Central  Google Scholar 

  23. Honsawek S, Tanavalee A, Sakdinakiattikoon M, Chayanupatkul M, Yuktanandana P (2009) Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis. Clin Biochem 42:808–812

    Article  CAS  PubMed  Google Scholar 

  24. Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E (2009) Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthr Cartil 17:1040–1048

    Article  CAS  PubMed  Google Scholar 

  25. Nelson AE, Fang F, Shi XA, Kraus VB, Stabler T, Renner JB (2009) Failure of serum transforming growth factor-beta (TGF-beta1) as a biomarker of radiographic osteoarthritis at the knee and hip: a cross-sectional analysis in the Johnston County Osteoarthritis Project. Osteoarthr Cartil 17:772–776

    Article  CAS  PubMed  Google Scholar 

  26. Weng LH, Wang CJ, Ko JY, Sun YC, Su YS, Wang FS (2009) Inflammation induction of Dickkopf-1 mediates chondrocyte apoptosis in osteoarthritic joint. Osteoarthr Cartil 17:933–943

    Article  PubMed  Google Scholar 

  27. Weng LH, Wang CJ, Ko JY, Sun YC, Wang FS (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62:1393–1402

    Article  CAS  PubMed  Google Scholar 

  28. Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N, Martel-Pelletier J (2002) Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E 2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthr Cartil 10(6):491–500

    Article  CAS  PubMed  Google Scholar 

  29. Take I, Kobayashi Y, Yamamoto Y, Tsuboi H, Ochi T, Uematsu S et al (2005) Prostaglandin E2 strongly inhibits human osteoclast formation. Endocrinology 146(12):5204–5214

    Article  CAS  PubMed  Google Scholar 

  30. Lecourt S, Mouly E, Freida D, Cras A, Ceccaldi R, Heraoui D et al (2013) A prospective study of bone marrow hematopoietic and mesenchymal stem cells in type 1 Gaucher disease patients. PLoS One 8(7):e69293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tat S K, Amiable N, Pelletier J P, et al. (2009) Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis[J]. Rheumatology: kep300

  32. Tat SK, Pelletier JP, Velasco CR et al (2009) New perspective in osteoarthritis: the OPG and RANKL system as a potential therapeutic target?[J]. The Keio journal of medicine 58(1):29–40

    Article  CAS  PubMed  Google Scholar 

  33. Hofbauer LC, Schoppet M (2001) Serum measurement of osteoprotegerin—clinical relevance and potential applications. Eur J Endocrinol 145:681–683

    Article  CAS  PubMed  Google Scholar 

  34. Khosla S, Arrighi HM, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Dunstan C, Riggs BL (2002) Correlates of osteoprotegerin levels in women and men. Osteoporos Int 13:394–399

    Article  CAS  PubMed  Google Scholar 

  35. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, Gouin F, Redini F, Heymann D (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163:2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  CAS  PubMed  Google Scholar 

  37. Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 19(7):874–885

    Article  CAS  Google Scholar 

  38. Wang SY, Liu YY, Ye H et al (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38(5):821–827

    Article  CAS  PubMed  Google Scholar 

  39. Glass DA, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751–764

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by wnt signaling. J Clin Invest 116:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldring SR, Goldring MB (2007) Eating bone or adding it: the wnt pathway decides. Nat Med 13:133–134

    Article  CAS  PubMed  Google Scholar 

  42. Felson DT (2014) The current and future status of biomarkers in osteoarthritis. J Rheumatol 41:834–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lotz M, Martel-Pelletier J, Christiansen C et al (2013) Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 72:1756–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saberi Hosnijeh F, Siebuhr AS, Uitterlinden AG et al (2015) Association between biomarkers of tissue inflammation and progression of osteoarthritis: evidence from the Rotterdam study cohort. Arthritis Research & Therapy 18(1):81

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Projects of International Cooperation and Exchanges NSFC (81420108021), National Key Technology Support Program (2015BAI08B02), Excellent Young Scholars NSFC (81622033), Jiangsu Provincial Key Medical Center Foundation, Jiangsu Provincial Medical Talent Foundation, and Jiangsu Provincial Medical Outstanding Talent Foundation. We thank the patients and their families who donated their blood samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huajian Teng or Qing Jiang.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, S., Wang, C., Lu, W. et al. Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-α in knee osteoarthritis patients. Clin Rheumatol 36, 2351–2358 (2017). https://doi.org/10.1007/s10067-017-3690-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3690-x

Keywords

Navigation