Skip to main content

Advertisement

Log in

Genome-wide DNA methylation analysis of articular chondrocytes identifies TRAF1, CTGF, and CX3CL1 genes as hypomethylated in osteoarthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

The aim of this study is to identify osteoarthritis (OA)-associated differentially methylated genes in human articular chondrocytes from patients with OA. DNA methylation profiling of articular chondrocytes from OA patients, rheumatoid arthritis (RA) patients, and controls was performed, and candidate genes were chosen for validation of gene demethylation status. The mRNA expression levels of candidate genes in chondrocytes were detected by real-time quantitative PCR. Chondrocytes from OA and RA group were treated with 5-Aza-2-deoxycytidine (5-Aza), and then the mRNA expression levels were detected. Forty-five genes with significant methylation differences between OA and control group were identified. Tumor necrosis factor receptor-associated factor 1 (TRAF1), connective tissue growth factor (CTGF), and chemokine (C-X3-C motif) ligand 1(CX3CL1) genes were hypomethylated in chondrocytes of OA and RA patients, which verified by bisulfite sequencing analysis. The mRNA expression level of TRAF1 and CTGF was significantly increased in OA and RA group (p < 0.05), while the expression level of CX3CL1 was only increased in OA group (p < 0.05). For the chondrocytes from OA and RA treated with 5-Aza, the mRNA expression level of TRAF1 and CTGF was highly increased (p < 0.05). It is the first time to show that TRAF1, CTGF, and CX3CL1 genes were hypomethylated in OA chondrocytes and have a consistent correlation with mRNA expression, which suggests that epigenetic changes in the methylation status of TRAF1, CTGF, and CX3CL1 contribute to the pathology of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thomas CM, Fuller CJ, Whittles CE et al (2007) Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthr Cartilage 15:27–34

    Article  CAS  Google Scholar 

  2. Iliopoulos D, Malizos KN, Tsezou A (2007) Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 66:1616–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts SB, Wootton E, De Ferrari L et al (2015) Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 35:1293–1305

    Article  CAS  PubMed  Google Scholar 

  4. Tsezou A (2014) Osteoarthritis year in review 2014: genetics and genomics. Osteoarthr Cartil 22:2007–2024

    Article  Google Scholar 

  5. Roach HI, Yamada N, Cheung KS et al (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52:3110–3124

    Article  CAS  PubMed  Google Scholar 

  6. Cheung KS, Hashimoto K, Yamada N et al (2009) Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int 29:525–534

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto K, Otero M, Imagawa K et al (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288:10061–10072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Andres MC, Imagawa K, Hashimoto K et al (2013) Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum 65:732–742

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hashimoto K, Oreffo RO, Gibson MB et al (2009) DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 60:3303–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynard LN, Bui C, Syddall CM, Loughlin J (2014) CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet 133:1059–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scott JL, Gabrielides C, Davidson RK et al (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 69:1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim KI, Park YS, Im GI (2013) Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res 28:1050–1060

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Tajes J, Soto-Hermida A, Vazquez-Mosquera ME et al (2014) Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis 73:668–677

    Article  CAS  PubMed  Google Scholar 

  14. Rushton MD, Reynard LN, Barter MJ et al (2014) Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheum 66:2450–2460

    Article  CAS  Google Scholar 

  15. Delgado-Calle J, Fernandez AF, Sainz J et al (2013) Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 65:197–205

    Article  CAS  PubMed  Google Scholar 

  16. Wajant H, Henkler F, Scheurich P (2001) The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 13:389–400

    Article  CAS  PubMed  Google Scholar 

  17. Zapata JM, Krajewska M, Krajewski S et al (2000) TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 165:5084–5096

    Article  CAS  PubMed  Google Scholar 

  18. Lu YY, Li ZZ, Jiang DS et al (2013) TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat Commun 4:2852

    PubMed  PubMed Central  Google Scholar 

  19. Schwenzer R, Siemienski K, Liptay S et al (1999) The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 274:19368–19374

    Article  CAS  PubMed  Google Scholar 

  20. Ha H, Han D, Choi Y (2009) TRAF-mediated TNFR-family signaling. Curr Protoc Immunol Nov;Chapter 11:Unit11.9D

  21. Kurko J, Besenyei T, Laki J et al (2013) Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol 45:170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206

    Article  CAS  PubMed  Google Scholar 

  23. Kubota S, Takigawa M (2011) The role of CCN2 in cartilage and bone development. J Cell Commun Signal 5:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tomita N, Hattori T, Itoh S et al (2013) Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth. PLoS One 8:e59226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar S, Connor JR, Dodds RA et al (2001) Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. Osteoarthr Cartilage 9:641–653

    Article  CAS  Google Scholar 

  26. Omoto S, Nishida K, Yamaai Y et al (2004) Expression and localization of connective tissue growth factor (CTGF/Hcs24/CCN2) in osteoarthritic cartilage. Osteoarthr Cartilage 12:771–778

    Article  Google Scholar 

  27. Honsawek S, Yuktanandana P, Tanavalee A et al (2012) Plasma and synovial fluid connective tissue growth factor levels are correlated with disease severity in patients with knee osteoarthritis. Biomarkers 17:303–308

    Article  CAS  PubMed  Google Scholar 

  28. Nozawa K, Fujishiro M, Kawasaki M et al (2009) Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res Ther 11:R174

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wojdasiewicz P, Poniatowski LA, Kotela A, Deszczynski J, Kotela I, Szukiewicz D (2014) The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Arch Immunol Ther Exp 62:395–403

    Article  CAS  Google Scholar 

  31. Huo LW, Ye YL, Wang GW et al (2015) Fractalkine (CX3CL1): a biomarker reflecting symptomatic severity in patients with knee osteoarthritis. J Investig Med 63:626–631

    Article  CAS  PubMed  Google Scholar 

  32. Jones B, Koch AE, Ahmed S (2011) Pathological role of fractalkine/CX3CL1 in rheumatic diseases: a unique chemokine with multiple functions. Front Immunol 2:82

    PubMed  Google Scholar 

  33. Endres M, Andreas K, Kalwitz G et al (2010) Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthr Cartilage 18:1458–1466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the study participants who made this study possible and all the staff in the in the orthopedics department of Beijing Hospital, People’s Hospital of Pecking University and Beijing Jishuitan Hospital operating theaters who helped us by collecting samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Like Zhao.

Ethics declarations

Funding

This study was funded by grants from the National Natural Science Foundation of China (No. 81102269).

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, Q., Zhang, C. et al. Genome-wide DNA methylation analysis of articular chondrocytes identifies TRAF1, CTGF, and CX3CL1 genes as hypomethylated in osteoarthritis. Clin Rheumatol 36, 2335–2342 (2017). https://doi.org/10.1007/s10067-017-3667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3667-9

Keywords

Navigation