Skip to main content

Evaluation of the effects of different supplementation on oxidative status in patients with rheumatoid arthritis

Abstract

Rheumatoid arthritis is a chronic inflammatory disease. Reactive oxygen species have been considered as aggravating factors for autoimmune diseases. Fatty acids had been linked in reduction of various diseases by augment of their antioxidant potential and antiinflammatory mechanisms. The aim of this study was to assess the oxidative status in patients with rheumatoid arthritis who used concentrated fish oil only or concentrated fish oil in combination with evening primrose oil in a period of 3 months. Subjects were divided into three groups. The group I consists of patients who had been taking only their regular rheumatologic therapy; group II, patients who had been taking concentrated fish oil; and group III, patients who had been taking concentrated fish oil and evening primrose oil. Peripheral blood samples were used for all the assays. We assessed the following oxidative stress markers: index of lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)), hydrogen peroxide (H2O2), superoxide anion radical (O2 ), nitric oxide (NO), superoxide dismutase activity (SOD), catalase activity (CAT), and glutathione levels (GSH) in erythrocytes. There were no statistically significant changes for any of the oxidative stress parameters in group I. In group II, levels of TBARS, NO2 , and GSH were increased, while levels of H2O2 decreased. Increased values of TBARS, NO2 , and SOD were found in group III. Our findings indicate that intakes of fish oil and evening primrose oil may be of importance in mitigation of inflammation, disease activity, and oxidative stress biomarkers, through increased activities of antioxidant enzymes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ngian GS (2010) Rheumatoid arthritis. Aust Fam Physician 39:626–628

    PubMed  Google Scholar 

  2. 2.

    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Chinopoulos C, Adam-Vizi V (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. Febs J 273:433–450

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Stamp LK, Khalilova I, Tarr JM et al (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 51:1796–1803

    CAS  Article  Google Scholar 

  5. 5.

    Veselinovic M, Barudzic N, Vuletic M et al (2014) Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. Mol Cell Biochem 391:225–232

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hennig B, Ettinger AS, Jandacek RJ et al (2007) Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ Health Perspect 115:493–495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Wang H, Khor TO, Saw CL et al (2010) Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid. Mol Pharm 7:2185–2193

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Groeger AL, Cipollina C, Cole MP et al (2010) Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6:433–441

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Vucic V (2013) The role of dietary polyunsaturated fatty acids in inflammation. Serb J Clin Exp Res 14:93–99

    Article  Google Scholar 

  11. 11.

    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Aletaha D, Neogi T, Silman A et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588

    Article  PubMed  Google Scholar 

  13. 13.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boka Raton, pp 123–132

    Google Scholar 

  17. 17.

    McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063

    CAS  PubMed  Google Scholar 

  18. 18.

    Catalase BE (1982) In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 105–106

    Google Scholar 

  19. 19.

    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  20. 20.

    Beutler E (1975) Reduced glutathione - GSH. In: Beutler E (ed) Red cell metabolism: a manual of biochemical methods. Grane and Straton, New York, pp 112–114

    Google Scholar 

  21. 21.

    Holub BJ (2002) Clinical nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ 166:608–615

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Trebble TM, Wootton SA, Miles EA et al (2003) Prostaglandin E2 production and T cell function after fish-oil supplementation: response to antioxidant cosupplementation. Am J Clin Nutr 78:376–382

    CAS  PubMed  Google Scholar 

  23. 23.

    Oh R (2005) Practical applications of fish oil (omega-3 fatty acids) in primary care. J Am Board Fam Pract 18:28–36, Review

    Article  PubMed  Google Scholar 

  24. 24.

    Sarban S, Kocyigit A, Yazar M et al (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem 38:981–986

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Akyol O, Nuran I, Temel I et al (2001) The relationships between plasma and erythrocyte antioxidant enzymes and lipid peroxidation in patients with rheumatoid arthritis. Joint Bone Spine 68:311–317

    Article  Google Scholar 

  26. 26.

    Erdogan H, Fadillioglu E, Ozgocmen S et al (2004) Effect of fish oil supplementation on plasma oxidant/antioxidant status in rats. Prostaglandins Leukotrienes Essent Fatty Acids 71:149–152

    CAS  Article  Google Scholar 

  27. 27.

    Balakumar P, Taneja G (2012) Fish oil and vascular endothelial protection: bench to bedside. Free Radic Biol Med 53:271–279, Review

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Darlington LG, Stone TW (2001) Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. Br J Nutr 85:251–269, Review

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Varming K, Schmidt EB, Svaneborg N et al (1995) The effect of n 3 fatty acids on neutrophil chemiluminescence. Scand J Clin Lab Invest 55:47–52

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Luostarinen R, Saldeen T (1996) Dietary fish oil decreases superoxide generation by human neutrophils: relation to cyclooxygenase pathway and lysosomal enzyme release. Prost Leuk Essent Fatty Acids 55:167–172

    CAS  Article  Google Scholar 

  31. 31.

    Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505–1519, Review

    Google Scholar 

  32. 32.

    Fisher M, Levine PH, Weiner BH et al (1990) Dietary n3 fatty acid supplementation reduces superoxide production and chemiluminescence in monocyte enriched preparation of leukocytes. Am J Clin Nutr 51:804–808

    CAS  PubMed  Google Scholar 

  33. 33.

    Thies F, Miles EA, Nebe-von-Caron G et al (2001) Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 36:1183–1193

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Healy DA, Wallace FA, Miles EA et al (2000) The effect of low to moderate amounts of dietary fish oil on neutrophil lipid composition and function. Lipids 35:763–768

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kew S, Banerjee T, Minihane AM et al (2003) Lack of effect of foods enriched with plant- or marine-derived n3 fatty acids on human immune function. Am J Clin Nutr 77:1287–1295

    CAS  PubMed  Google Scholar 

  36. 36.

    Miles EA, Banerjee T, Dooper MWBW et al (2004) The influence of different combinations of γ-linolenic acid, stearidonic acid and EPA on immune function in healthy young male subjects. Br J Nutr 91:893–903

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Halvorsen DA, Hansen J-B, Grimsgaard S et al (1997) The effect of highly purified eicosapentaenoic and docosahexaenoic acids on monocyte phagocytosis in man. Lipids 32:935–942

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Cimen MYB, Cimen OB, Kacmaz M et al (2000) Oxidant/antioxidant status of the erythrocytes from patients with rheumatoid arthritis. Clin Rheumatol 19:275–277

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Popovic T, Borozan S, Arsic A et al (2012) Fish oil supplementation improved liver phospholipids fatty acid composition and parameters of oxidative stress in male Wistar rats. J Anim Physiol Anim Nutr 96:1020–1029

    CAS  Article  Google Scholar 

  40. 40.

    Mahmoodi MR, Kimiagar M, Mehrabi Y (2014) The effects of omega-3 plus vitamin E and zinc plus vitamin C supplementation on cardiovascular risk markers in postmenopausal women with type 2 diabetes. Ther Advanc Endocrin Metab 5(4):67–76

    CAS  Article  Google Scholar 

  41. 41.

    Gupta S, Sharma TK, Kaushik GG et al (2011) Vitamin E supplementation may ameliorate oxidative stress in type 1 diabetes mellitus patients. Clin Lab 57:379–86

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 175043), and the Faculty of Medical Sciences, University of Kragujevac (Junior Project 01/14).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasiljevic, D., Veselinovic, M., Jovanovic, M. et al. Evaluation of the effects of different supplementation on oxidative status in patients with rheumatoid arthritis. Clin Rheumatol 35, 1909–1915 (2016). https://doi.org/10.1007/s10067-016-3168-2

Download citation

Keywords

  • Fatty acids
  • Oxidative stress
  • Rheumatoid arthritis