Advertisement

Clinical Rheumatology

, Volume 34, Issue 6, pp 1009–1018 | Cite as

Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis

  • John D. ReveilleEmail author
Review Article

Abstract

With the growing awareness of the impact of chronic back pain and axial spondyloarthritis and recent breakthroughs in genetics and the development of novel treatments which may impact best on early disease, the need for markers that can facilitate early diagnosis and profiling those individuals at the highest risk for a bad outcome has never been greater. The genetic basis of ankylosing spondylitis has been considerably advanced, and HLA-B27 testing has a role in the diagnosis. Knowledge is still incomplete of the rest of the genetic contribution to disease susceptibility, and it is likely premature to use extensive genetic testing (other than HLA-B27) for diagnosis. Serum and plasma biomarkers have been examined extensively in assessing disease activity, treatment response, and as predictors or radiographic severity. For assessing disease activity, other than C-reactive protein and erythrocyte sedimentation rate, the most work has been in examining cytokines (particularly interleukin 17 and 23), matrix metalloproteinase (MMP) markers (particularly MMP3). For assessing those at the highest risk for radiographic progression, biomarkers of bony metabolism, cartilage and connective tissue degradation products, and adipokines have been most extensively assessed. The problem is that no individual biomarkers has been reproducibly shown to assess disease activity or predict outcome, and this area still remains an unmet need, of relevance to industry stakeholders, to regulatory bodies, to the healthcare system, to academic investigators, and finally to patients and providers.

Keywords

Biomarkers Diagnostic tools Genetics Radiographic outcome Spondyloarthritis Treatment response 

Notes

Acknowledgments

We would like to express our appreciation to Dr. Lianne Gensler for her suggestions and help in preparing this manuscript.

Disclosures

None.

References

  1. 1.
    Weisman MH, Witter JP, Reveille JD (2013) The prevalence of inflammatory back pain: population-based estimates from the US National Health and Nutrition Examination Survey, 2009–10. Ann Rheum Dis 72(3):369–373CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Rudwaleit M, Metter A, Listing J, Sieper J, Braun J (2006) Inflammatory back pain in ankylosing spondylitis: a reassessment of the clinical history for application as classification and diagnostic criteria. Arthritis Rheum 54(2):569–578CrossRefPubMedGoogle Scholar
  3. 3.
    Reveille JD, Witter JP, Weisman MH (2012) Prevalence of axial spondyloarthritis in the United States: estimates from a cross-sectional survey. Arthritis Care Res (Hoboken) 64(6):905–910CrossRefGoogle Scholar
  4. 4.
    Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin A (1994) A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 21(12):2286–2291PubMedGoogle Scholar
  5. 5.
    Van der Heijde D, Lie E, Kvien TK, Sieper J, Van den Bosch F, Listing J, Braun J, Landewé R (2009) ASDAS, a highly discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann Rheum Dis 68(12):1811–1818CrossRefPubMedGoogle Scholar
  6. 6.
    Calin A, Garrett S, Whitelock H, Kennedy LG, O'Hea J, Mallorie P, Jenkinson T (1994) A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol 21(12):2281–2285PubMedGoogle Scholar
  7. 7.
    van der Heijde D, Landewé R (2005) Selection of a method for scoring radiographs for ankylosing spondylitis clinical trials, by the Assessment in Ankylosing Spondylitis Working Group and OMERACT. J Rheumatol 32(10):2048–2049PubMedGoogle Scholar
  8. 8.
    van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27(4):361–368CrossRefPubMedGoogle Scholar
  9. 9.
    Rudwaleit M, Khan MA, Sieper J (2005) The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum 52(4):1000–1008CrossRefPubMedGoogle Scholar
  10. 10.
    Rudwaleit M, Landewe R, van der Heijde D, Listing J, Brandt J, Braun J et al (2009) The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis 68(6):770–776CrossRefPubMedGoogle Scholar
  11. 11.
    Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH et al (2013) The impact of TNF-inhibitors on radiographic progression in Ankylosing Spondylitis. Arthritis Rheum 65(10):2645–2654PubMedCentralPubMedGoogle Scholar
  12. 12.
    Reveille JD, Hirsch R, Dillon CF, Carroll MD, Weisman MH (2012) The prevalence of HLA-B27 in the US: data from the US National Health and Nutrition Examination Survey, 2009. Arthritis Rheum 64(5):1407–1411CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Bennett AN, McGonagle D, O'Connor P, Hensor EM, Sivera F, Coates LC et al (2008) Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum 58(11):3413–3418CrossRefPubMedGoogle Scholar
  14. 14.
    Sieper J, Srinivasan S, Zamani O, Mielants H, Choquette D, Pavelka K et al (2013) Comparison of two referral strategies for diagnosis of axial spondyloarthritis: the Recognising and Diagnosing Ankylosing Spondylitis Reliably (RADAR) study. Ann Rheum Dis 72(10):1621–1627CrossRefPubMedGoogle Scholar
  15. 15.
    Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45(7):730–738CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Annas GJ, Elias S (2014) 23andMe and the FDA. N Engl J Med 370:985–988CrossRefPubMedGoogle Scholar
  17. 17.
    Robinson PC, Claushuis TA, Cortes A, Martin TM, Evans DM, Leo P et al (2015) Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol 67(1):140–151CrossRefPubMedGoogle Scholar
  18. 18.
    Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P et al (2014) Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. doi: 10.1136/annrheumdis-2013-204835, Epub ahead of print PubMedGoogle Scholar
  19. 19.
    Spoorenberg A, van der Heijde D, de Klerk E, Dougados M, de Vlam K, Mielants H, van der Tempel H, van der Linden S (1999) Relative value of erythrocyte sedimentation rate and C-reactive protein in assessment of disease activity in ankylosing spondylitis. J Rheumatol 26(4):980–984PubMedGoogle Scholar
  20. 20.
    Ruof J, Stucki G (1999) Validity aspects of erythrocyte sedimentation rate and C-reactive protein in ankylosing spondylitis: a literature review. J Rheumatol 26(4):966–970PubMedGoogle Scholar
  21. 21.
    Rudwaleit M, Haibel H, Baraliakos X, Listing J, Marker-Hermann E, Zeidler H et al (2009) The early disease stage in axial spondylarthritis: results from the German Spondyloarthritis Inception Cohort. Arthritis Rheum 60(3):717–727CrossRefPubMedGoogle Scholar
  22. 22.
    Wallis D, Haroon N, Ayearst R, Carty A, Inman RD (2013) Ankylosing spondylitis and nonradiographic axial spondyloarthritis: part of a common spectrum or distinct diseases? J Rheumatol 40(12):2038–2041CrossRefPubMedGoogle Scholar
  23. 23.
    Bredella MA, Steinbach LS, Morgan S, Ward M, Davis JC (2006) MRI of the sacroiliac joints in patients with moderate to severe ankylosing spondylitis. AJR Am J Roentgenol 187(6):1420–1426CrossRefPubMedGoogle Scholar
  24. 24.
    Poddubnyy DA, Rudwaleit M, Listing J, Braun J, Sieper J (2010) Comparison of a high sensitivity and standard C reactive protein measurement in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis. Ann Rheum Dis 69(7):1338–1341CrossRefPubMedGoogle Scholar
  25. 25.
    Gratacós J, Collado A, Filella X, Sanmartí R, Cañete J, Llena J, Molina R, Ballesta A, Muñoz-Gómez J (1994) Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol 33(10):927–931CrossRefPubMedGoogle Scholar
  26. 26.
    Bal A, Unlu E, Bahar G, Aydog E, Eksioglu E, Yorgancioglu R (2007) Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol 26(2):211–215CrossRefPubMedGoogle Scholar
  27. 27.
    Romero-Sanchez C, Jaimes DA, Londoño J, De Avila J, Castellanos JE, Bello JM, Bautista W, Valle-Oñate R (2011) Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin Exp Rheumatol 29(5):828–834PubMedGoogle Scholar
  28. 28.
    Pedersen SJ, Sørensen IJ, Garnero P, Johansen JS, Madsen OR, Tvede N et al (2011) ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFα inhibitors. Ann Rheum Dis 70(8):1375–1381CrossRefPubMedGoogle Scholar
  29. 29.
    Sveaas SH, Berg IJ, Provan SA, Semb AG, Olsen IC, Ueland T et al (2015) Circulating levels of inflammatory cytokines and cytokine receptors in patients with ankylosing spondylitis: a cross-sectional comparative study. Scand J Rheumatol 44(2):118–124CrossRefPubMedGoogle Scholar
  30. 30.
    Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z et al (2011) Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol 30(2):269–273CrossRefPubMedGoogle Scholar
  31. 31.
    Chen WS, Chang YS, Lin KC, Lai CC, Wang SH, Hsiao KH et al (2012) Association of serum interleukin-17 and interleukin-23 levels with disease activity in Chinese patients with ankylosing spondylitis. J Chin Med Assoc 75(7):303–308CrossRefPubMedGoogle Scholar
  32. 32.
    Andersen T, Rasmussen TK, Hvid M, Holm CK, Madsen KJ, Jurik AG et al (2012) Increased plasma levels of IL-21 and IL-23 in spondyloarthritis are not associated with clinical and MRI findings. Rheumatol Int 32(2):387–393CrossRefPubMedGoogle Scholar
  33. 33.
    Li XL, Lin TT, Qi CY, Yuan L, Xia LP, Shen H, Lu J (2013) Elevated serum level of IL-33 and sST2 in patients with ankylosing spondylitis: associated with disease activity and vascular endothelial growth factor. J Investig Med 61(5):848–851PubMedGoogle Scholar
  34. 34.
    Li GX, Wang S, Duan ZH, Zeng Z, Pan FM (2013) Serum levels of IL-33 and its receptor ST2 are elevated in patients with ankylosing spondylitis. Scand J Rheumatol 42(3):226–231CrossRefPubMedGoogle Scholar
  35. 35.
    Han GW, Zeng LW, Liang CX, Cheng BL, Yu BS, Li HM, Zeng FF, Liu SY (2011) Serum levels of IL-33 is increased in patients with ankylosing spondylitis. Clin Rheumatol 30(12):1583–1588CrossRefPubMedGoogle Scholar
  36. 36.
    Keyszer G, Lambiri I, Nagel R, Keysser C, Keysser M, Gromnica-Ihle E et al (1999) Circulating levels of matrix metalloproteinases MMP-3 and MMP-1, tissue inhibitor of metalloproteinases 1 (TIMP-1), and MMP-1/TIMP-1 complex in rheumatic disease. Correlation with clinical activity of rheumatoid arthritis versus other surrogate markers. J Rheumatol 26(2):251–258PubMedGoogle Scholar
  37. 37.
    Chen CH, Lin KC, Yu DT, Yang C, Huang F, Chen HA et al (2006) Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology (Oxford) 45(4):414–420CrossRefGoogle Scholar
  38. 38.
    Mattey DL, Packham JC, Nixon NB, Coates L, Creamer P, Hailwood S, Taylor GJ, Bhalla AK (2012) Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res Ther 28;14(3):R127CrossRefGoogle Scholar
  39. 39.
    Yang C, Gu J, Rihl M, Baeten D, Huang F, Zhao M et al (2004) Serum levels of matrix metalloproteinase 3 and macrophage colony-stimulating factor 1 correlate with disease activity in ankylosing spondylitis. Arthritis Rheum 51(5):691–699CrossRefPubMedGoogle Scholar
  40. 40.
    Wendling D, Cedoz JP, Racadot E (2008) Serum levels of MMP-3 and cathepsin K in patients with ankylosing spondylitis: effect of TNF alpha antagonist therapy. Joint Bone Spine 75(5):559–562CrossRefPubMedGoogle Scholar
  41. 41.
    Sun S, Bay-Jensen AC, Karsdal MA, Siebuhr AS, Zheng Q, Maksymowych WP, Christiansen TG, Henriksen K (2014) The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet Disord 19(15):93. doi: 10.1186/1471-2474-15-93 CrossRefGoogle Scholar
  42. 42.
    Woo JH, Lee HJ, Sung IH, Kim TH (2007) Changes of clinical response and bone biochemical markers in patients with ankylosing spondylitis taking etanercept. J Rheumatol 34(8):1753–1759PubMedGoogle Scholar
  43. 43.
    Arends S, van der Veer E, Groen H, Houtman PM, Jansen TL, Leijsma MK et al (2011) Serum MMP-3 level as a biomarker for monitoring and predicting response to etanercept treatment in ankylosing spondylitis. J Rheumatol 38(8):1644–1650CrossRefPubMedGoogle Scholar
  44. 44.
    Turina MC, Yeremenko N, Paramarta JE, De Rycke L, Baeten D (2014) Calprotectin (S100A8/9) as serum biomarker for clinical response in proof-of-concept trials in axial and peripheral spondyloarthritis. Arthritis Res Ther 16(4):413. doi: 10.1186/s13075-014-0413-4 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Maksymowych WP, Landewé R, Conner-Spady B, Dougados M, Mielants H, van der Tempel H, Poole AR, Wang N, van der Heijde D (2007) Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum 56(6):1846–1853CrossRefPubMedGoogle Scholar
  46. 46.
    Taylan A, Sari I, Akinci B, Bilge S, Kozaci D, Akar S et al (2012) Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Disord 13:191. doi: 10.1186/1471-2474-13-191 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Franck H, Meurer T, Hofbauer LC (2004) Evaluation of bone mineral density, hormones, biochemical markers of bone metabolism, and osteoprotegerin serum levels in patients with ankylosing spondylitis. J Rheumatol 31(11):2236–2241PubMedGoogle Scholar
  48. 48.
    Genre F, López-Mejías R, Miranda-Filloy JA, Ubilla B, Carnero-López B, Palmou-Fontana N et al (2014) Osteoprotegerin correlates with disease activity and endothelial activation in non-diabetic ankylosing spondylitis patients undergoing TNF-α antagonist therapy. Clin Exp Rheumatol 32(5):640–646PubMedGoogle Scholar
  49. 49.
    Chen CH, Chen HA, Liao HT, Liu CH, Tsai CY, Chou CT (2010) Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in ankylosing spondylitis: OPG is associated with poor physical mobility and reflects systemic inflammation. Clin Rheumatol 29(10):1155–1161CrossRefPubMedGoogle Scholar
  50. 50.
    Klingberg E, Nurkkala M, Carlsten H, Forsblad-d'Elia H (2014) Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J Rheumatol 41(7):1349–1356CrossRefPubMedGoogle Scholar
  51. 51.
    de Andrade KR, de Castro GR, Vicente G, da Rosa JS, Nader M, Pereira IA, Fröde TS (2014) Evaluation of circulating levels of inflammatory and bone formation markers in axial spondyloarthritis. Int Immunopharmacol 21(2):481–486CrossRefPubMedGoogle Scholar
  52. 52.
    Matzkies FG, Targan SR, Berel D, Landers CJ, Reveille JD, McGovern DP, Weisman MH (2012) Markers of intestinal inflammation in patients with ankylosing spondylitis: a pilot study. Arthritis Res Ther 14(6):R261. doi: 10.1186/ar4106 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Schonthaler HB, Guinea-Viniegra J, Wculek SK, Ruppen I, Ximenez-Embun P, Guio-Carrion A, Navarro R, Hogg N, Ashman K, Wagner EF (2013) S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity 39:1171–1181CrossRefPubMedGoogle Scholar
  54. 54.
    Hammer HB, Kvien TK, Glennås A, Melby K (1995) A longitudinal study of calprotectin as an inflammatory marker in patients with reactive arthritis. Clin Exp Rheumatol 13(1):59–64PubMedGoogle Scholar
  55. 55.
    Turina MC, Sieper J, Yeremenko N, Conrad K, Haibel H, Rudwaleit M, Baeten D, Poddubnyy D (2014) Calprotectin serum level is an independent marker for radiographic spinal progression in axial spondyloarthritis. Ann Rheum Dis 73(9):1746–1748CrossRefPubMedGoogle Scholar
  56. 56.
    Drouart M, Saas P, Billot M, Cedoz JP, Tiberghien P, Wendling D, Toussirot E (2003) High serum vascular endothelial growth factor correlates with disease activity of spondylarthropathies. Clin Exp Immunol 132(1):158–162CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Poddubnyy D, Conrad K, Haibel H, Syrbe U, Appel H, Braun J, Rudwaleit M, Sieper J (2014) Elevated serum level of the vascular endothelial growth factor predicts radiographic spinal progression in patients with axial spondyloarthritis. Ann Rheum Dis 73(12):2137–2143CrossRefPubMedGoogle Scholar
  58. 58.
    Vosse D, Landewé R, Garnero P, van der Heijde D, van der Linden S, Geusens P (2008) Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 47(8):1219–1222CrossRefGoogle Scholar
  59. 59.
    Arends S, Spoorenberg A, Efde M, Bos R, Leijsma MK, Bootsma H et al (2014) Higher bone turnover is related to spinal radiographic damage and low bone mineral density in ankylosing spondylitis patients with active disease: a cross-sectional analysis. PLoS ONE 11;9(6):e99685. doi: 10.1371/journal.pone.0099685 CrossRefGoogle Scholar
  60. 60.
    Bay-Jensen AC, Karsdal MA, Vassiliadis E, Wichuk S, Marcher-Mikkelsen K, Lories R, Christiansen C, Maksymowych WP (2013) Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum 65(4):972–980CrossRefPubMedGoogle Scholar
  61. 61.
    Pedersen SJ, Sørensen IJ, Lambert RG, Hermann KG, Garnero P, Johansen JS et al (2011) Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors: a study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation, angiogenesis, and cartilage and bone turnover. Arthritis Rheum 63(12):3789–3800CrossRefPubMedGoogle Scholar
  62. 62.
    Bay-Jensen AC, Wichuk S, Byrjalsen I, Leeming DJ, Morency N, Christiansen C, Karsdal MA, Maksymowych WP (2013) Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS ONE 8(1):e54504. doi: 10.1371/journal.pone.0054504 CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60(11):3257–3262CrossRefPubMedGoogle Scholar
  64. 64.
    Saad CG, Ribeiro AC, Moraes JC, Takayama L, Goncalves CR, Rodrigues MB et al (2012) Low sclerostin levels: a predictive marker of persistent inflammation in ankylosing spondylitis during anti-tumor necrosis factor therapy? Arthritis Res Ther 14(5):R216. doi: 10.1186/ar4055 CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Tuylu T, Sari I, Solmaz D, Kozaci DL, Akar S, Gunay N, Onen F, Akkoc N (2014) Fetuin-A is related to syndesmophytes in patients with ankylosing spondylitis: a case control study. Clinics (Sao Paulo) 69(10):688–693CrossRefGoogle Scholar
  66. 66.
    Korkosz M, Gąsowski J, Leszczyński P, Pawlak-Buś K, Jeka S, Kucharska E, Grodzicki T (2013) High disease activity in ankylosing spondylitis is associated with increased serum sclerostin level and decreased wingless protein-3a signaling but is not linked with greater structural damage. BMC Musculoskelet Disord 14:99. doi: 10.1186/1471-2474-14-99 CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H et al (2012) High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 71(4):572–574CrossRefPubMedGoogle Scholar
  68. 68.
    Yucong Z, Lu L, Shengfa L, Yongliang Y, Ruguo S, Yikai L (2014) Serum functional dickkopf-1 levels are inversely correlated with radiographic severity of ankylosing spondylitis. Clin Lab 60(9):1527–1531PubMedGoogle Scholar
  69. 69.
    Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS, Yoon BY et al (2012) Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int 32(8):2523–2527CrossRefPubMedGoogle Scholar
  70. 70.
    Franck H, Keck E (1993) Serum osteocalcin and vitamin D metabolites in patients with ankylosing spondylitis. Ann Rheum Dis 52(5):343–346CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Yilmaz N, Ozaslan J (2000) Biochemical bone turnover markers in patients with ankylosing spondylitis. Clin Rheumatol 19(2):92–98CrossRefPubMedGoogle Scholar
  72. 72.
    Visvanathan S, van der Heijde D, Deodhar A, Wagner C, Baker DG, Han J et al (2009) Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann Rheum Dis 68:175–182CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Genre F, López-Mejías R, Miranda-Filloy JA, Ubilla B, Carnero-López B, Blanco R, Pina T, González-Juanatey C, Llorca J, González-Gay MA (2014) Adipokines, biomarkers of endothelial activation, and metabolic syndrome in patients with ankylosing spondylitis.Biomed Res Int.;2014:860651. doi:  10.1155/2014/860651
  74. 74.
    Kim KJ, Kim JY, Park SJ, Yoon H, Yoon CH, Kim WU, Cho CS (2012) Serum leptin levels are associated with the presence of syndesmophytes in male patients with ankylosing spondylitis. Clin Rheumatol 31(8):1231–1238CrossRefPubMedGoogle Scholar
  75. 75.
    Syrbe U, Callhoff J, Conrad K, Poddubnyy D, Haibel H, Junker S et al (2015) Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol 67(3):678–685CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2015

Authors and Affiliations

  1. 1.Division of Rheumatology and Clinical ImmunogeneticsThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations