Skip to main content


Log in

Tespa1 is associated with susceptibility but not severity of rheumatoid arthritis in the Zhejiang Han population in China

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript


Observational and experimental studies in animal models have shown that Tespa1 may be associated with B cell function and the onset of rheumatoid arthritis (RA). We hypothesized that Tespa1 may also play an important role in patients with RA. To test this hypothesis, we investigated the expression level, gene polymorphisms, and promoter methylation of the Tespa1 gene in 77 RA patients and 113 matched healthy controls. We found that the expression of Tespa1 is significantly lower in RA patients with both low and moderate-to-high disease activity. Moreover, patients with familial (first-degree siblings) but not sporadic RA have a statistically significant difference at the rs4758993 locus with healthy people. Furthermore, we found seven methylation sites on the Tespa1 promoter, but no evidence of the association between methylation at these sites and RA susceptibility. These data support a potential role for Tespa1 in the pathogenesis of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2(6):473–88

    Article  CAS  PubMed  Google Scholar 

  2. Smolen JS et al (2007) New therapies for treatment of rheumatoid arthritis. Lancet 370(9602):1861–74

    Article  CAS  PubMed  Google Scholar 

  3. Kremer JM et al (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349(20):1907–15

    Article  CAS  PubMed  Google Scholar 

  4. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–19

    Article  CAS  PubMed  Google Scholar 

  5. De Vita S et al (2002) Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum 46(8):2029–33

    Article  PubMed  Google Scholar 

  6. Edwards JC et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350(25):2572–81

    Article  CAS  PubMed  Google Scholar 

  7. Wang D et al (2012) Tespa1 is involved in late thymocyte development through the regulation of TCR-mediated signaling. Nat Immunol 13(6):560–8

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, et al (2014) Tespa1 negatively regulates FcepsilonRI-mediated signaling and the mast cell-mediated allergic response J Exp Med

  9. Matsuzaki H et al (2013) Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem Biophys Res Commun 433(3):322–6

    Article  CAS  PubMed  Google Scholar 

  10. Fujimoto T et al (2013) Tespa1 protein is phosphorylated in response to store-operated calcium entry. Biochem Biophys Res Commun 434(1):162–5

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, et al (2014) Lack of association between TESPA1 gene polymorphisms (rs1801876, rs2171497, rs4758994, and rs997173) and ankylosing spondylitis in a Chinese population. Inflammation

  12. Arnett FC et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–24

    Article  CAS  PubMed  Google Scholar 

  13. Prevoo ML et al (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–8

    Article  CAS  PubMed  Google Scholar 

  14. Park YJ et al (2013) The APOM polymorphism as a novel risk factor for dyslipidaemia in rheumatoid arthritis: a possible shared link between disease susceptibility and dyslipidaemia. Clin Exp Rheumatol 31(2):180–8

    PubMed  Google Scholar 

  15. Woodward M (1992) Formulae for sample size, power and minimum detectable relative risk in medical studies. J R Stat Soc 4(2):185–196, Series D (The Statistician)

    Google Scholar 

  16. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376(9746):1094–108

    Article  PubMed  Google Scholar 

  17. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30(11):1205–13

    Article  CAS  PubMed  Google Scholar 

  18. Taneja V et al (1996) Polymorphism of HLA-DRB, -DQA1, and -DQB1 in rheumatoid arthritis in Asian Indians: association with DRB1*0405 and DRB1*1001. Hum Immunol 46(1):35–41

    Article  CAS  PubMed  Google Scholar 

  19. Eberhardt K et al (1996) Associations of HLA-DRB and -DQB genes with two and five year outcome in rheumatoid arthritis. Ann Rheum Dis 55(1):34–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Begovich AB et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75(2):330–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Negi S et al (2013) A genome-wide association study reveals ARL15, a novel non-HLA susceptibility gene for rheumatoid arthritis in North Indians. Arthritis Rheum 65(12):3026–35

    Article  CAS  PubMed  Google Scholar 

  22. Gregersen PK, Batliwalla F (2005) PTPN22 and rheumatoid arthritis: gratifying replication. Arthritis Rheum 52(7):1952–5

    Article  CAS  PubMed  Google Scholar 

  23. Ramirez M et al (2012) The PTPN22 C1858T variant as a risk factor for rheumatoid arthritis and systemic lupus erythematosus but not for systemic sclerosis in the Colombian population. Clin Exp Rheumatol 30(4):520–4

    PubMed  Google Scholar 

  24. Worthington J, John S (2003) Association of PADI4 and rheumatoid arthritis: a successful multidisciplinary approach. Trends Mol Med 9(10):405–7

    Article  CAS  PubMed  Google Scholar 

  25. Harney SM et al (2005) Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology (Oxford) 44(7):869–72

    Article  CAS  Google Scholar 

  26. Zhang X et al (2014) Association between polymorphism in TRAF1/C5 gene and risk of rheumatoid arthritis: a meta-analysis. Mol Biol Rep 41(1):317–24

    Article  PubMed  Google Scholar 

  27. Kelley JM et al (2010) Genetic variants of STAT4 associated with rheumatoid arthritis in persons of Asian and European ancestry do not replicate in African Americans. Ann Rheum Dis 69(4):625–6

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lu D, Xu S (2013) Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia. Front Genet 4:127

    Article  PubMed Central  PubMed  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation for Young Scientists of China (31300733) and Natural Science Foundation of Zhejiang Province (Y13H100006).

Conflict of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Hui Sun.

Additional information

Yunliang Yao and Hui Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, H., Shao, S. et al. Tespa1 is associated with susceptibility but not severity of rheumatoid arthritis in the Zhejiang Han population in China. Clin Rheumatol 34, 665–671 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: