Clinical Rheumatology

, Volume 33, Issue 10, pp 1415–1423 | Cite as

Concurrent use of methotrexate and celecoxib increases risk of silent liver fibrosis in rheumatoid arthritis patients with subclinical reduced kidney function

  • Jin Su Park
  • Min-Chan Park
  • Yong-Beom Park
  • Soo-Kon Lee
  • Sang-Won LeeEmail author
Original Article


We evaluated the effects of concurrent use of methotrexate and celecoxib on silent liver and kidney damages in rheumatoid arthritis (RA) patients. We enrolled 92 RA patients with normal laboratory results related to liver and kidney functions, who had received methotrexate and celecoxib concurrently over 6 months. Liver stiffness measurement (LSM) using transient elastography and ultrasonography were performed along with blood and urine tests. Estimated glomerular filtration rate (eGFR) was calculated by both the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) equations. Initial eGFR represented kidney function at the time of the initiation of celecoxib. The cutoff for abnormal LSM values was adopted as 5.3 kPa. The optimal cutoff of each eGFR for abnormal LSM values was also calculated. The median age of patients was 55 years old (74 women). The median LSM was 4.4 kPa and the median eGFRs and median initial eGFRs ranged from 89 to 99 mL/min/1.73 m2. The cumulative doses of methotrexate and celecoxib and their concurrent administration duration did not affect LSM values and eGFRs. Both eGFRs were significantly associated with LSM values. Patients with initial eGFR(CKD-EPI), initial eGFR(MDRD), and eGFR(CKD-EPI) below each optimal cutoff had significantly high risks for silent liver fibrosis (RR 9.4, 10.3, and 4.4, p < 0.001, respectively). Both initial eGFRs (CKD-EPI and MDRD) and eGFR (CKD-EPI) were significant predictors for the development of silent liver fibrosis in RA patients who had received methotrexate and celecoxib concurrently for at least 6 months.


Celecoxib Estimated glomerular filtration rate Liver fibrosis Methotrexate Rheumatoid arthritis Transient elastography 






Supplementary material

10067_2014_2719_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)


  1. 1.
    Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344(12):907–16PubMedCrossRefGoogle Scholar
  2. 2.
    Finckh A, Liang MH, van Herckenrode CM, de Pablo P (2006) Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: a meta-analysis. Arthritis Rheum 55(6):864–72PubMedCrossRefGoogle Scholar
  3. 3.
    Weinblatt ME, Weissman BN, Holdsworth DE, Fraser PA, Maier AL, Falchuk KR et al (1992) Long-term prospective study of methotrexate in the treatment of rheumatoid arthritis. 84-month update. Arthritis Rheum 35(2):129–37PubMedCrossRefGoogle Scholar
  4. 4.
    Salliot C, van der Heijde D (2009) Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann Rheum Dis 68(7):1100–4PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Barbero-Villares A, Mendoza Jiménez-Ridruejo J, Taxonera C, López-Sanromán A, Pajares R, Bermejo F et al (2012) Evaluation of liver fibrosis by transient elastography (Fibroscan®) in patients with inflammatory bowel disease treated with methotrexate: a multicentric trial. Scand J Gastroenterol 47(5):575–9PubMedCrossRefGoogle Scholar
  6. 6.
    Kremer JM, Alarcón GS, Lightfoot RW Jr, Willkens RF, Furst DE, Williams HJ et al (1994) Methotrexate for rheumatoid arthritis. Suggested guidelines for monitoring liver toxicity American College of Rheumatology. Arthritis Rheum 37(3):316–28PubMedCrossRefGoogle Scholar
  7. 7.
    Weinblatt ME, Kaplan H, Germain BF, Merriman RC, Solomon SD, Wall B et al (1991) Methotrexate in rheumatoid arthritis: effects on disease activity in a multicenter prospective study. J Rheumatol 18(3):334–8PubMedGoogle Scholar
  8. 8.
    Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H et al (2007) Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther 322(3):1162–70PubMedCrossRefGoogle Scholar
  9. 9.
    Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E et al (2008) Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol 596(1–3):166–72PubMedCrossRefGoogle Scholar
  10. 10.
    Maeda A, Tsuruoka S, Ushijima K, Kanai Y, Endou H, Saito K et al (2010) Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur J Pharmacol 640(1–3):168–71PubMedCrossRefGoogle Scholar
  11. 11.
    Karim A, Tolbert DS, Hunt TL, Hubbard RC, Harper KM, Geis GS (1999) Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol 26(12):2539–43PubMedGoogle Scholar
  12. 12.
    Colebatch AN, Marks JL, van der Heijde DM, Edwards CJ (2012) Safety of nonsteroidal antiinflammatory drugs and/or paracetamol in people receiving methotrexate for inflammatory arthritis: a Cochrane systematic review. J Rheumatol Suppl 90:62–73PubMedCrossRefGoogle Scholar
  13. 13.
    Hübner G, Sander O, Degner FL, Türck D, Rau R (1997) Lack of pharmacokinetic interaction of meloxicam with methotrexate in patients with rheumatoid arthritis. J Rheumatol 24(5):845–51PubMedGoogle Scholar
  14. 14.
    Schwartz JI, Agrawal NG, Wong PH, Miller J, Bachmann K, Marbury T et al (2009) Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol 49(10):1202–9PubMedCrossRefGoogle Scholar
  15. 15.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–24PubMedCrossRefGoogle Scholar
  16. 16.
    Lee SW, Park HJ, Kim BK, Han KH, Lee SK, Kim SU et al (2012) Leflunomide increases the risk of silent liver fibrosis in patients with rheumatoid arthritis receiving methotrexate. Arthritis Res Ther 14(5):R232PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–62PubMedCrossRefGoogle Scholar
  18. 18.
    Lujan PR, Chiurchiu C, Douthat W, de Arteaga J, de la Fuente J, Capra RH et al (2012) CKD-EPI instead of MDRD for candidates to kidney donation. Transplantation 94(6):637–41PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SU, Choi GH, Han WK, Kim BK, Park JY, Kim do Y et al (2010) What are ‘true normal’ liver stiffness values using FibroScan?: a prospective study in healthy living liver and kidney donors in South Korea. Liver Int 30(2):268–74PubMedCrossRefGoogle Scholar
  20. 20.
    Matsushita K, Tonelli M, Lloyd A, Levey AS, Coresh J, Hemmelgarn BR, Alberta Kidney Disease Network (2012) Clinical risk implications of the CKD Epidemiology Collaboration (CKD-EPI) equation compared with the Modification of Diet in Renal Disease (MDRD) Study equation for estimated GFR. Am J Kidney Dis 60(2):241–9PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami Y, Yamazaki K, Sakauchi N, Ogasawara H, Yamashita N, Masuda T et al (1998) A one-month repeated oral dose toxicity study of methotrexate in unilaterally nephrectomized rats. J Toxicol Sci Suppl 5:681–99CrossRefGoogle Scholar

Copyright information

© Clinical Rheumatology 2014

Authors and Affiliations

  • Jin Su Park
    • 1
  • Min-Chan Park
    • 1
  • Yong-Beom Park
    • 1
  • Soo-Kon Lee
    • 1
  • Sang-Won Lee
    • 1
    Email author
  1. 1.Division of Rheumatology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations