Skip to main content

Hyperuricemia and metabolic syndrome: associations with chronic kidney disease

Abstract

The effects of serum uric acid (SUA) and metabolic syndrome on chronic kidney disease (CKD) remain controversial. This study grouped subjects according to a combination of their uric acid and metabolic syndrome status and investigated the association between these groups and CKD to clarify the relationships of SUA and metabolic syndrome to CKD. This survey analyzed data from 81,799 adults (45,148 men and 36,651 women) who underwent health examinations at Chang Gung Memorial Hospital, in northern Taiwan, from 2000 through 2007. Hyperuricemia was defined as an SUA greater than 7.7 mg/dL in men or greater than 6.6 mg/dL in women. Patients were classified by uric acid–metabolic syndrome status as follows: A = no hyperuricemia and no metabolic syndrome, B = presence of metabolic syndrome but not hyperuricemia, C = presence of hyperuricemia but no metabolic syndrome, and D = presence of both hyperuricemia and metabolic syndrome. Kidney function was assessed in terms of the estimated glomerular filtration rate (eGFR) by using the Modification of Diet in Renal Disease Study equation modified for Chinese. CKD was defined as an eGFR <60 mL/min/1.73 m2. The prevalences of hyperuricemia, metabolic syndrome, and CKD were 22.8% (26.3% in men and 18.6% in women), 13.5% (15.0% in men and 11.6% in women), and 2.2% (2.1% in men and 2.2% in women), respectively. In men, the age-adjusted odds ratios for CKD, with group A as reference, were 1.95 for group B, 4.86 for group C, and 5.85 for group D. In women, the age-adjusted odds ratios were 1.96 for group B, 6.66 for group C, and 9.01 for group D. Hyperuricemia is strongly associated with CKD, independent of the presence of metabolic syndrome.

This is a preview of subscription content, access via your institution.

References

  1. K/DOQI (2002) Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266

    Article  Google Scholar 

  2. Wortmann RL, Kelley WN (2005) Gout and hyperuricemia. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology, 7th edn. W.B. Saunders, Philadelphia, pp 1402–1448

    Google Scholar 

  3. Becker MA, Jolly M (2005) Clinical gout and the pathogenesis of hyperuricemia. In: Koopman WJ (ed) Arthritis and allied conditions, 15th edn. Williams & Wilkins, Baltimore, pp 2303–2339

    Google Scholar 

  4. Iseki K, Oshiro S, Tozawa M et al (2001) Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res 24:691–697

    Article  PubMed  CAS  Google Scholar 

  5. Chen YC, Su CT, Wang ST et al (2009) A preliminary investigation of the association between serum uric acid and impaired renal function. Chang Gung Med J 32:66–71

    PubMed  Google Scholar 

  6. Weiner DE, Tighiouart H, Elsayed EF et al (2008) Uric acid and incident kidney disease in the community. J Am Soc Nephrol 19:1204–1211

    Article  PubMed  CAS  Google Scholar 

  7. Cirillo P, Sato W, Reungjui S, Heinig M et al (2006) Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol 17:S165–S168

    Article  PubMed  CAS  Google Scholar 

  8. Lohsoonthorn V, Dhanamun B, Williams MA (2006) Prevalence of hyperuricemia and its relationship with metabolic syndrome in Thai adults receiving annual health exams. Arch Med Res 37:883–889

    Article  PubMed  CAS  Google Scholar 

  9. Choi HK, Ford ES (2007) Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med 120:442–447

    Article  PubMed  Google Scholar 

  10. Lin SD, Tsai DH, Hsu SR (2006) Association between serum uric acid level and components of the metabolic syndrome. J Chin Med Assoc 69:512–516

    Article  PubMed  CAS  Google Scholar 

  11. Ford ES, Li C, Cook S, Choi HK (2007) Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 115:2526–2532

    Article  PubMed  CAS  Google Scholar 

  12. Yoo TW, Sung KC, Shin HS et al (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69:928–933

    Article  PubMed  CAS  Google Scholar 

  13. Chen J, Muntner P, Hamm LL et al (2004) The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med 140:167–174

    PubMed  Google Scholar 

  14. Kurella M, Lo JC, Chertow GM (2005) Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol 16:2134–2140

    Article  PubMed  Google Scholar 

  15. Ma YC, Zuo L, Chen JH et al (2006) Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 17:2937–2944

    Article  PubMed  Google Scholar 

  16. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    PubMed  CAS  Google Scholar 

  17. James DR, Price CP (1984) Problem associated with the measurement of uric acid using two enzyme-mediated reaction systems. Ann Clin Biochem 21:405–410

    PubMed  CAS  Google Scholar 

  18. Spencer K (1986) Analytic reviews in clinical biochemistrythe estimation of creatinine. Ann Clin Biochem 23:1–25

    PubMed  CAS  Google Scholar 

  19. Chang HY, Pan WH, Yeh WT et al (2001) Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993-96). J Rheumatol 28:1640–1646

    PubMed  CAS  Google Scholar 

  20. Yu KH, See LC, Huang YC et al (2008) Dietary factors associated with hyperuricemia in adults. Semin Arthritis Rheum 37:243–250

    Article  PubMed  CAS  Google Scholar 

  21. Tan CE, Ma S, Wai D et al (2004) Can we apply the national cholesterol education program adult treatment panel definition of the metabolic syndrome to Asians? Diab Care 27:1182–1186

    Article  Google Scholar 

  22. Bureau of Health Promotion, Department of Health, Taiwan. The criteria of metabolic syndrome. Available for download from http://www.bhp.doh.gov.tw/asp/news/file/2005125154090XP3WQ/0931012 Accessed 30 Sep 2009

  23. Chobanian AV, Bakris GL, Black HR et al (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289:2560–2572

    Article  PubMed  CAS  Google Scholar 

  24. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey, pp 563–564, appendix 64

    Google Scholar 

  25. Nakagawa T, Cirillo P, Sato W et al (2008) The conundrum of hyperuricemia, metabolic syndrome, and renal disease. Intern Emerg Med 3:313–318

    Article  PubMed  Google Scholar 

  26. Johnson RJ, Segal MS, Sautin Y et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906

    PubMed  CAS  Google Scholar 

  27. Fishberg AM (1924) The interpretation of increased blood uric acid in hyertension. Arch Int Med 34:503–507

    CAS  Google Scholar 

  28. Hall AP, Barry PE, Dawber TR et al (1967) Epidemiology of gout and hyperuricemia. A long-term population study. Am J Med 42:27–37

    Article  PubMed  CAS  Google Scholar 

  29. Glynn RJ, Campion EW, Silbert JE (1983) Trends in serum uric acid levels 1961–1980. Arthritis Rheum 26:87–93

    Article  PubMed  CAS  Google Scholar 

  30. Mikkelsen WM, Dodge HJ, Valkenburg HA et al (1965) The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia, Tecumseh, Michigan, 1959-1960. Am J Med 39:242–251

    Article  PubMed  CAS  Google Scholar 

  31. Duff IF, Mikkelsen WM, Dodge HJ et al (1968) Comparison of uric acid levels in some Oriental and Caucasian groups unselected as to gout or hyperuricemia. Arthritis Rheum 11:184–190

    Article  PubMed  CAS  Google Scholar 

  32. Chonchol M, Shlipak MG, Katz R et al (2007) Relationship of uric acid with progression of kidney disease. Am J Kidney Dis 50:239–247

    Article  PubMed  CAS  Google Scholar 

  33. Facchini F, Chen YD, Hollenbeck CB et al (1991) Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 266:3008–3011

    Article  PubMed  CAS  Google Scholar 

  34. Vuorinen-Markkola H, Yki-Järvinen H (1994) Hyperuricemia and insulin resistance. J Clin Endocrinol Metab 78:25–29

    Article  PubMed  CAS  Google Scholar 

  35. Dehghan A, van Hoek M, Sijbrands EJ et al (2008) High serum uric acid as a novel risk factor for type 2 diabetes. Diab Care 31:361–362

    Article  CAS  Google Scholar 

  36. Sui X, Church TS, Meriwether RA et al (2008) Uric acid and the development of metabolic syndrome in women and men. Metabolism 57:845–852

    Article  PubMed  CAS  Google Scholar 

  37. Rosolowsky ET, Ficociello LH, Maselli NJ et al (2008) High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 3:706–713

    Article  PubMed  CAS  Google Scholar 

  38. Lin JL, Lim PS (1992) Elevated lead burden in Chinese patients without occupational lead exposure. Miner Electrolyte Metab 18:1–5

    PubMed  CAS  Google Scholar 

  39. Lin JL, Tan DT, Ho HH et al (2002) Environmental lead exposure and urate excretion in the general population. Am J Med 113:563–568

    Article  PubMed  CAS  Google Scholar 

  40. Lai LH, Chou SY, Wu FY et al (2008) Renal dysfunction and hyperuricemia with low blood lead levels and ethnicity in community-based study. Sci Total Environ 401:39–43

    Article  PubMed  CAS  Google Scholar 

  41. Shadick NA, Kim R, Weiss S et al (2000) Effect of low level lead exposure on hyperuricemia and gout among middle aged and elderly men: the normative aging study. J Rheumatol 27:1708–1712

    PubMed  CAS  Google Scholar 

  42. Lin JL, Yu CC, Lin-Tan DT et al (2001) Lead chelation therapy and urate excretion in patients with chronic renal diseases and gout. Kidney Int 60:266–271

    Article  PubMed  CAS  Google Scholar 

  43. Lin JL, Tan DT, Hsu KH et al (2001) Environmental lead exposure and progressive renal insufficiency. Arch Intern Med 161:264–271

    Article  PubMed  CAS  Google Scholar 

  44. Fox IH, Kelley WN (1974) Studies on the mechanism of fructose-induced hyperuricemia in man. Adv Exp Med Biol 41:463–470

    PubMed  CAS  Google Scholar 

  45. Nakagawa T, Hu H, Zharikov S et al (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Ren Physiol 290:F625–F631

    Article  CAS  Google Scholar 

  46. Sánchez-Lozada LG, Tapia E, Bautista-García P et al (2008) Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Ren Physiol 294:F710–F718

    Article  Google Scholar 

  47. Sánchez-Lozada LG, Tapia E, Jimenez A et al (2007) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Ren Physiol 292:F423–F429

    Article  Google Scholar 

  48. Ryan MC, Fenster Farin HM, Abbasi F et al (2008) Comparison of waist circumference versus body mass index in diagnosing metabolic syndrome and identifying apparently healthy subjects at increased risk of cardiovascular disease. Am J Cardiol 102:40–46

    Article  PubMed  Google Scholar 

  49. Pan WH, Flegal KM, Chang HY et al (2004) Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians. Am J Clin Nutr 79:31–39

    PubMed  CAS  Google Scholar 

  50. Lin YC, Yen LL, Chen SY et al (2003) Prevalence of overweight and obesity and its associated factors: findings from National Nutrition and Health Survey in Taiwan, 1993-1996. Prev Med 37:233–241

    Article  PubMed  Google Scholar 

  51. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163

    Article  Google Scholar 

  52. Feig D, Kivlighn S, Kanellis J et al (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183–1190

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Ministry of Education of Taiwan (Project No. EMRPD180201) and Chang Gung Memorial Hospital (Project No. CMRPG370401) for financially supporting this research.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Hui Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

See, LC., Kuo, CF., Chuang, FH. et al. Hyperuricemia and metabolic syndrome: associations with chronic kidney disease. Clin Rheumatol 30, 323–330 (2011). https://doi.org/10.1007/s10067-010-1461-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-010-1461-z

Keywords

  • Chronic kidney disease
  • Hyperuricemia
  • Metabolic syndrome
  • Uric acid