Advertisement

Clinical Rheumatology

, Volume 26, Issue 3, pp 289–297 | Cite as

A possible link between Crohn’s disease and ankylosing spondylitis via Klebsiella infections

  • Alan Ebringer
  • Taha Rashid
  • Harmale Tiwana
  • Clyde Wilson
Review

Abstract

Crohn’s disease (CD) is an immune-mediated gastrointestinal inflammatory disease, which could arise from an interplay between genetic and environmental factors. Klebsiella microbes were suggested to have a vital role in the initiation and perpetuation of the disease through the mechanism of molecular mimicry. This proposition is based on the results of various studies where significantly elevated levels of antibodies against the whole bacteria or preparations from Klebsiella microbes and antibodies to collagen types I, III, IV, and V were detected in patients with CD and patients with ankylosing spondylitis (AS). Molecular similarities were found between Klebsiella nitrogenase and HLA-B27 genetic markers and between Klebsiella pullulanase and collagen fibers types I, III, and IV. Furthermore, significantly positive correlations and cross-reactivity binding activities were observed between anti-Klebsiella and anticollagen antibodies among patients with CD and AS. Early treatment of CD patients with anti-Klebsiella measures is proposed, which may involve the use of antibiotics and low starch diet together with other traditionally used immunomodulatory, immunosuppressive, or biologic agents.

Keywords

Ankylosing spondylitis Crohn’s disease Klebsiella 

Notes

Acknowledgements

We thank the Trustees of the Middlesex Hospital, the Arthritis Research Campaign (Grant EO514), and “American Friends of King’s College London” for their support.

References

  1. 1.
    Reveille JD, Arnett FC (2005) Spondyloarthritis: update on pathogenesis and management. Am J Med 118:592–603PubMedCrossRefGoogle Scholar
  2. 2.
    Stenson WF (2004) Inflammatory bowel disease. In: Goldman L, Ansiello D (eds) Cecil textbook of medicine. Saunders, Philadelphia, PA, pp 861–868Google Scholar
  3. 3.
    Jewell DP (2003) Crohn’s disease. In: Warrell DA, Cox TM, Firth JD, Benz EJ Jr (eds) Oxford textbook of medicine. Oxford University Press, Oxford, pp 604–611Google Scholar
  4. 4.
    Ebinger M, Leidl R, Thomas S, Von Tirpitz C, Reinshagen M, Adler G et al (2004) Cost of outpatient care in patients with inflammatory bowel disease in a German university hospital. J Gastroenterol Hepatol 19:192–199PubMedCrossRefGoogle Scholar
  5. 5.
    Soncini M, Triossi O, Leo P, Magni G (2004) Inflammatory bowel disease and hospital treatment in Italy: the RING multi-centre study. Aliment Pharmacol Ther 19:63–68PubMedCrossRefGoogle Scholar
  6. 6.
    Dekker-Saeys BJ, Meuwissen SG, Van Den Berg-Loonen EM, De Haas WH, Meijers KA, Tytgat GN (1978) Ankylosing spondylitis and inflammatory bowel disease. III. Clinical characteristics and results of histocompatibility typing (HLA-B27) in 50 patients with both ankylosing spondylitis and inflammatory bowel disease. Ann Rheum Dis 37:36–41PubMedGoogle Scholar
  7. 7.
    Purrmann J, Zeidler H, Bertrams J, Juli E, Cleveland S, Berges W et al (1988) HLA antigens in ankylosing spondylitis associated with Crohn’s disease. Increased frequency of the HLA phenotype B27, B44. J Rheumatol 15:1658–1661PubMedGoogle Scholar
  8. 8.
    Huaux JP, Fiasse R, De Bruyere M, Nagant de Deuxchaisnes C (1977) HLA-B27 in regional enteritis with and without ankylosing spondylitis or sacroiliitis. J Rheumatol 3:60–63Google Scholar
  9. 9.
    Braun J, Bollow M, Remlinger G, Eggens U, Rudwaleit M, Distler A et al (1998) Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 41:58–67PubMedCrossRefGoogle Scholar
  10. 10.
    Arseneau KO, Pizarro TT, Cominelli F (2000) Discovering the cause of inflammatory bowel disease: lessons from animal model. Curr Opin Gastroenterol 16:310–317PubMedCrossRefGoogle Scholar
  11. 11.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603PubMedCrossRefGoogle Scholar
  12. 12.
    Newman B, Siminovitch KA (2005) Recent advances in the genetics of inflammatory bowel disease. Curr Opin Gastroenterol 21:401–407PubMedGoogle Scholar
  13. 13.
    Laukens D, Peeters H, Marichal D, Vander Crussen B, Mielants H, Elewaut D et al (2005) CARD 15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann Rheum Dis 64:930–935PubMedCrossRefGoogle Scholar
  14. 14.
    Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G (2003) Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 124:1767–1773PubMedCrossRefGoogle Scholar
  15. 15.
    Franchimont D, Belaiche J, Louis E, Simon S, GrandBastien B, Gower-Rousseau C et al (1997) Familial Crohn’s disease: a study of 18 families. Acta Gastroenterol Belg 60:134–137PubMedGoogle Scholar
  16. 16.
    Eastmond CJ, Woodrow JC (1977) Discordance for ankylosing spondylitis in monozygotic twins. Ann Rheum Dis 36:360–364PubMedGoogle Scholar
  17. 17.
    Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al (1997) Susceptibility of ankylosing spondylitis in twins: the role of genes, HLA and the environment. Arthritis Rheum 40:1823–1828PubMedGoogle Scholar
  18. 18.
    Van der Paardt M, Dijkmans B, Giltay E, Van der Horst-Bruinsma I (2002) Dutch patients with familial and sporadic ankylosing spondylitis do not differ in disease phenotype. J Rheumatol 29:2583–2584PubMedGoogle Scholar
  19. 19.
    Andersson RE, Olaison G, Tysk C, Ekbom A (2003) Appendectomy is followed by increased risk of Crohn’s disease. Gastroenterology 124:40–46PubMedCrossRefGoogle Scholar
  20. 20.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL et al (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180:2359–2364PubMedCrossRefGoogle Scholar
  21. 21.
    Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr, Balish E et al (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 98:945–953PubMedGoogle Scholar
  22. 22.
    Wright V (1978) Seronegative polyarthritis: a unified concept. Arthritis Rheum 21:619–633PubMedGoogle Scholar
  23. 23.
    Mielants H, Veys EM, Joos R, Cuvelier C, De Vos M (1987) Repeat ileocolonoscopy in reactive arthritis. J Rheumatol 14:456–458PubMedGoogle Scholar
  24. 24.
    Palm O, Moum B, Ongre A, Gran JT (2002) Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). J Rheumatol 29:511–515PubMedGoogle Scholar
  25. 25.
    Bjarnason I, Helgason KO, Geirsson AJ, Sigthorsson G, Reynisdottir I, Gudbjartsson D et al (2003) Subclinical intestinal inflammation and sacroiliac changes in relatives of patients with ankylosing spondylitis. Gastroenterology. 125:1598–1605PubMedCrossRefGoogle Scholar
  26. 26.
    Steer S, Jones H, Hibbert J, Kondeatis E, Vaughan R, Sanderson J et al (2003) Low back pain, sacroiliitis, and the relationship with HLA-B27 in Crohn’s disease. J Rheumatol 30:518–522PubMedGoogle Scholar
  27. 27.
    Podswiadek M, Punzi L, Stramare R, D’Inca R, Ferronato A, Lo Nigro A et al (2004) The prevalence of radiographic sacroiliitis is patients affected by inflammatory bowel disease with inflammatory low back pain. Reumatismo 56:110–113PubMedGoogle Scholar
  28. 28.
    Ebringer R, Cooke D, Cawdell DR, Cowling P, Ebringer A (1977) Ankylosing spondylitis: Klebsiella and HLA-B27. Rheumatol Rehabil 16:190–196PubMedCrossRefGoogle Scholar
  29. 29.
    Kujath K, Kekow M, Drynda S, Podschun R, Sahly H, Kekow J (2001) The presence of Klebsiella in feces and smears in patients with and without ankylosing spondylitis-isolation of multiple Klebsiella species and K serotypes (abstract). Arthritis Rheum 44 (Suppl 9):S1103Google Scholar
  30. 30.
    Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H et al (2002) Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatol (Oxf) 41:1395–1401CrossRefGoogle Scholar
  31. 31.
    Stone MA, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD (2004) Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatol (Oxf) 43:148–155CrossRefGoogle Scholar
  32. 32.
    Ebringer A, Rashid T, Wilson C, Ptaszynska T, Fielder M (2006) Ankylosing spondylitis as an auto-immune disease linked to intestinal Klebsiella infection: prospects for a new therapeutic approach. Curr Rheumatol Rev 2:55–68CrossRefGoogle Scholar
  33. 33.
    Blankenberg-Sprenkels SHD, Fielder M, Feltkamp TEW, Tiwana H, Wilson C, Ebringer A (1998) Antibodies to Klebsiella pneumoniae in Dutch patients with ankylosing spondylitis and acute anterior uveitis and to Proteus mirabilis in rheumatoid arthritis. J Rheumatol 25:743–747PubMedGoogle Scholar
  34. 34.
    Maki-Ikola O, Hallgren R, Kanerud L, Feltelius N, Knutsson L, Granfors K (1997) Enhanced jejunal production of antibodies to Klebsiella and other Enterobacteria in patients with ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 56:421–425PubMedGoogle Scholar
  35. 35.
    Schwimmbeck PL, Yu DTY, Oldstone MBA (1987) Autoantibodies to HLA-B27 in the sera of HLA-B27 patients with ankylosing spondylitis and Reiter’s syndrome: molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J Exp Med 166:173–181PubMedCrossRefGoogle Scholar
  36. 36.
    Charalambous BM, Keen JN, McPherson MJ (1988) Collagen-like sequences stabilize homotrimers of a bacterial hydrolase. EMBO J 7:2903–2909PubMedGoogle Scholar
  37. 37.
    Husby G, Tsuchiya N, Schwimmbeck PL, Keat A, Pahle JA, Oldstone MB et al (1989) Cross-reactive epitope with Klebsiella pneumoniae nitrogenase in articular tissue of HLA-B27+ patients with ankylosing spondylitis. Arthritis Rheum 32:437–445PubMedGoogle Scholar
  38. 38.
    Wilson C, Rashid T, Tiwana H, Beyan H, Hughes L, Bansal S et al (2003) Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 30:972–978PubMedGoogle Scholar
  39. 39.
    Plessier A, Cosnes J, Gendre JP, Beaugerie L (2002) Intercurrent Klebsiella oxytoca colitis in a patient with Crohn’s disease. Gastroenterol Clin Biol 26:799–800PubMedGoogle Scholar
  40. 40.
    Horing E, Gopfert D, Schroter G, von Gaisberg U (1991) Frequency and spectrum of microorganisms isolated from biopsy specimens in chronic colitis. Endoscopy 23:325–327PubMedCrossRefGoogle Scholar
  41. 41.
    Walmsley RS, Anthony A, Sim R, Pounder RE, Wakefiled AJ (1998) Absence of Escherichia coli, Listeria monocytogenes and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues. J Clin Pathol 51:657–661PubMedGoogle Scholar
  42. 42.
    Ibbotson JP, Pease PE, Allan RN (1987) Serological studies in Crohn’s disease. Eur J Clin Microbiol 6:286–290PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper R, Fraser SM, Sturrock RD, Gemmell CG (1988) Raised titres of anti-Klebsiella IgA in ankylosing spondylitis, rheumatoid arthritis, and inflammatory bowel disease. Br Med J 296:1432–1434CrossRefGoogle Scholar
  44. 44.
    O’Mahony S, Anderson N, Nuki G, Ferguson A (1992) Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn’s disease. Ann Rheum Dis 51:1296–1300PubMedCrossRefGoogle Scholar
  45. 45.
    Tiwana H, Wilson C, Walmsley RS, Wakefiled AJ, Smith MS, Cox NL et al (1997) Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis. Rheumatol Int 17:11–16PubMedCrossRefGoogle Scholar
  46. 46.
    Tiwana H, Walmsley RS, Wilson C, Yiannakou JY, Ciclitira PJ, Wakefield AJ et al (1998) Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis. Br J Rheumatol 37:525–531PubMedCrossRefGoogle Scholar
  47. 47.
    Tiwana H, Natt RS, Benitez–Brito R, Shah S, Wilson C, Bridger S et al (2001) Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn’s disease and ankylosing spondylitis. Rheumatol (Oxf) 40:15–23CrossRefGoogle Scholar
  48. 48.
    Demetter P, De Vos M, Van Huysse JA, Baeten D, Ferdinande L, Peeters H et al (2005) Colon mucosa of patients both with spondyloarthritis and Crohn’s disease is enriched with macrophages expressing the scavenger receptor CD163. Ann Rheum Dis 64:321–324PubMedCrossRefGoogle Scholar
  49. 49.
    Baeten D, Demetter P, Cuvelier CA, Kruithof E, Van Damme N, De Vos M et al (2002) Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol 196:343–350PubMedCrossRefGoogle Scholar
  50. 50.
    De Keyser F, Elewaut D, De Vos M, De Vlam K, Cuvelier C, Mielants H et al (1998) Bowel inflammation and the spondyloarthropathies. Rheum Dis Clin North Am 24:785–813PubMedCrossRefGoogle Scholar
  51. 51.
    De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys EM (1996) Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110:1696–1703PubMedCrossRefGoogle Scholar
  52. 52.
    Siegert S, Yin Z, Radburch A, Sieper J, Braun J (1998) Evidence for a different cytokine secretion pattern of peripheral blood mononuclear cells (PBC) of HLA B27+ patients with ankylosing spondylitis (AS) and HLA B27+ healthy controls compared to HLA B27-negative controls. Arthritis Rheum 41(Suppl 9):1530Google Scholar
  53. 53.
    Van Damme N, De Vos M, Baeten D, Demetter P, Mielants H, Verbruggen G et al (2001) Flow cytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis 60:495–499PubMedCrossRefGoogle Scholar
  54. 54.
    Fielder M, Pirt SJ, Tarpey I, Wilson C, Cunningham P, Ettelaie C et al (1995) Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae. FEBS Lett 369:243–248PubMedCrossRefGoogle Scholar
  55. 55.
    Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S et al (1988) Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology 94:257–265PubMedGoogle Scholar
  56. 56.
    Stallmach A, Schuppan D, Riese HH, Matthes H, Riecken EO (1992) Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology 102:1920–1929PubMedGoogle Scholar
  57. 57.
    Anderson IH, Levine AS, Levitt MD (1981) Incomplete absorption of the carbohydrate in all-purpose wheat flour. N Engl J Med 304:891–892PubMedCrossRefGoogle Scholar
  58. 58.
    Sandborn WJ (2003) Evidence-based treatment algorithm for mild to moderate Crohn’s disease. Am J Gastroenterol 98 (Suppl 12):S1–S5PubMedCrossRefGoogle Scholar
  59. 59.
    Siegel CA, Sands BE (2005) Review article: practical management of inflammatory bowel disease patients taking immunomodulators. Aliment Pharmacol Ther 22:1–16PubMedCrossRefGoogle Scholar
  60. 60.
    Travassos WJ, Cheifetz AS (2005) Infliximab: use in inflammatory bowel disease. Curr Treat Options Gastroenterol 8:187–196PubMedGoogle Scholar
  61. 61.
    Hanauer SB, Sanborn WJ, Rutgeerts P, Fedorak RN, Lukas M, Macintosh D et al (2006) Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130:323–333PubMedCrossRefGoogle Scholar
  62. 62.
    Herrlinger KR, Witthoeft T, Raedler A, Bokemeyer B, Krummenerl T, Schulzke J et al (2006) Randomized, double blind controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn’s disease. Am J Gastroenterol 101:793–797PubMedCrossRefGoogle Scholar
  63. 63.
    Tobon GJ, Canas C, Jaller J, Restrepo J, Anaya J (2006) Serious liver disease induced by infliximab. Clin Rheumatol (in press). DOI 10.1007/s10067-005-0169-y
  64. 64.
    Ursing B, Alm T, Barany F, Bergelin I, Ganrot-Norlin K, Hoevels J et al (1982) A comparative study of metronidazole and sulfasalazine for active Crohn’s disease: the cooperative Crohn’s disease study in Sweden. II. Result. Gastroenterology 83:550–562PubMedGoogle Scholar
  65. 65.
    Greenbloom SL, Steinhart AH, Greenberg GR (1998) Combination ciprofloxacin and metronidazole for active Crohn’s disease. Can J Gastroenterol 12:53–56PubMedGoogle Scholar
  66. 66.
    Leiper K, Morris AI, Rhodes JM (2000) Open label trial of oral clarithromycin in active Crohn’s disease. Aliment Pharmacol Ther 14:801–806PubMedCrossRefGoogle Scholar
  67. 67.
    Arnold GL, Beaves MR, Pryjdun VO, Mook WJ (2002) Preliminary study of ciprofloxacin in active Crohn’s disease. Inflamm Bowel Dis 8:10–15PubMedCrossRefGoogle Scholar
  68. 68.
    Bamias G, Marini M, Moskaluk CA, Odashima M, Ross WG, Rivera-Nieves J et al (2002) Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn’s disease. J Immunol 169:5308–5314PubMedGoogle Scholar
  69. 69.
    Wild GE (2004) The role of antibiotics in the management of Crohn’s disease. Inflamm Bowel Dis 10:321–323PubMedCrossRefGoogle Scholar
  70. 70.
    Thukral C, Travassos WJ, Peppercorn MA (2005) The role of antibiotics in inflammatory bowel disease. Curr Treat Options Gastroenterol 8:223–228PubMedGoogle Scholar
  71. 71.
    Aberra FN, Brensinger CM, bilker WB, Lichtenstein GR, Lewis JD (2005) Antibiotic use and the risk of flare of inflammatory bowel disease. Clin Gastroenterol Hepatol 3:459–465PubMedCrossRefGoogle Scholar
  72. 72.
    Gionchetti P, Rizzello F, Morselli C, Romagnoli R, Campieri M (2005) Management of inflammatory bowel disease: does rifaximin offer any promise? Chemotherapy 51(Suppl 1):96–102PubMedCrossRefGoogle Scholar
  73. 73.
    Hemphill A, Mueller J, Esposito M (2006) Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother 7:953–964PubMedCrossRefGoogle Scholar
  74. 74.
    Sutherland L, Singleton J, Sessions J, Hanauer S, Krawitt E, Rankin G et al (1991) Double blind, placebo controlled trial of metronidazole in Crohn’s disease. Gut 32:1071–1075PubMedGoogle Scholar
  75. 75.
    Steinhart AH, Feagan BG, Wong CJ, Vandervoort M, Mikolainis S, Croitoru K et al (2002) Combined budesonide and antibiotic therapy for active Crohn’s disease: a randomised controlled trial. Gastroenterology 123:33–40PubMedCrossRefGoogle Scholar
  76. 76.
    Rioux KP, Fedorak RN (2006) Probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 40:260–263PubMedCrossRefGoogle Scholar
  77. 77.
    Kleessen B, Stoof G, Proll J, Schmiedl D, Noack J, Blaut M (1997) Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J Anim Sci 75:2453–2462PubMedGoogle Scholar
  78. 78.
    Ebringer A, Baines M, Childerstone M, Ghuloom M, Ptaszynska T (1985) Etiopathogenesis of ankylosing spondylitis and the cross-tolerance hypothesis. In: Ziff M, Cohen SB (eds) Advances in inflammation research—the spondyloarthropathies. Raven, New York, pp 101–128Google Scholar
  79. 79.
    Finegold SM, Sutter VL, Sugihara PT, Elder HA, Lehmann SM, Phillips RL (1977) Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 30:1781–1792PubMedGoogle Scholar
  80. 80.
    Ebringer A, Wilson C (1996) The use of low starch diet in the treatment of patients suffering from ankylosing spondylitis. Clin Rheumatol 15(Suppl 1):62–66PubMedGoogle Scholar

Copyright information

© Clinical Rheumatology 2006

Authors and Affiliations

  • Alan Ebringer
    • 1
    • 2
  • Taha Rashid
    • 1
  • Harmale Tiwana
    • 1
  • Clyde Wilson
    • 3
    • 4
  1. 1.School of Biomedical and Health SciencesKing’s College LondonLondonUK
  2. 2.Department of Rheumatology, Middlesex HospitalUCL School of MedicineLondonUK
  3. 3.Department of PathologyKing Edward VII Memorial HospitalHamiltonBermuda
  4. 4.Department of MicrobiologyKing Edward VII Memorial HospitalHamiltonBermuda

Personalised recommendations