Skip to main content
Log in

Osteocalcin synthesis by human osteoblasts from normal and osteoarthritic bone after vitamin D3 stimulation

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Alterations in osteoblast metabolism are involved in the pathogenesis of typical subchondral bone changes in osteoarthritis (OA). Osteocalcin is a specific bone protein, synthesised by the osteoblasts, which can be considered a marker of metabolic activity of these cells. In this study we correlated osteocalcin production from human osteoblasts isolated from healthy and osteoarthritic subjects to the degree of cartilage damage, before and after stimulation with 1,25(OH)2-vitamin D3, the active metabolite of vitamin D3. We isolated human osteoblasts from cancellous bone of healthy subjects and from subchondral bone of osteoarthritic subjects and considered the osteoblasts corresponding to different degrees of cartilage damage as different cell populations. We determined the osteocalcin production in normal and osteoarthritic osteoblasts from maximal and minimal cartilage damage areas both under basal conditions and after vitamin D3 stimulation. Compared to normal osteoblasts, under basal conditions osteocalcin production is significantly greater in osteoarthritic osteoblasts, corresponding both to maximal and minimal damage joint areas. No differences were observed between osteoblasts from maximal and minimal damage areas. The response of osteoblasts to vitamin D3 stimulation appeared to be proportional to the degree of joint damage, as the vitamin D3-induced increase in osteocalcin is proportionally greater in maximally damaged osteoblasts compared to minimally damaged ones. Thus, after vitamin D3 stimulation, a significant increase in osteocalcin production by maximally damaged osteoblasts compared to the minimally damaged ones was observed. This study confirms abnormal osteoarthritic osteoblast behaviour and indicates that osteoblasts from different areas of the same affected joint may be metabolically different, supporting the hypothesis that subchondral osteoblasts may play an essential role in the pathogenesis of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 a, b
Fig. 2

Similar content being viewed by others

References

  1. Carlson CS, Loeser RF, Jayo MG, Weaver DS, Jerome CP (1994) Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res 12:331–339

    PubMed  Google Scholar 

  2. Carlson CS, Loeser RF, Purser MJ, Gardin JF, Jerome CP (1993) Osteoarthritis in cynomolgus macaques. III: effects of age, gender and subchondral bone thickness on the severity of disease. Bone Miner Res 11:1209–1217

    Google Scholar 

  3. Dequeker J, Mohan S, Finkelman RD, Aerssens J, Baylink DJ (1993) Generalised osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor β in cortical bone from the iliac crest. Possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum 36:1702–1708

    CAS  PubMed  Google Scholar 

  4. Raymaekers G, Aerssens J, Van den Eynde R, Peeters J, Geusens P, Devos P, et al. (1992) Alterations of the mineralisation profile and osteocalcin concentrations in osteoarthritic cortical iliac crest bone. Calcif Tissue Int 51:269–275

    PubMed  Google Scholar 

  5. Lajeunesse D, Busque L, Ménard P, Brunette MG, Bonny Y (1996) Demonstration of an osteoblast defect in two cases of human malignant osteoporosis: correction of the phenotype after bone marrow transplant. J Clin Invest 98:1835–1842

    CAS  PubMed  Google Scholar 

  6. Hilal G, Martel-Pelletier J, Pelletier JP, Lajeunesse D (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro. Possible role in subchondral bone sclerosis. Arthritis Rheum 41:891–899

    Article  PubMed  Google Scholar 

  7. Lajeunesse D, Hilal G, Pelletier JP, Martel-Pelletier J (1999) Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage 7:321–322

    Article  PubMed  Google Scholar 

  8. Altman E, Asch D, Bloch G, Bole D, Borenstein K, et al. (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 29:1039–1049

    CAS  PubMed  Google Scholar 

  9. Zambonin G, Colucci S, Cantatore FP, Grano M (1998) Response of human osteoblasts to polymethylmetacrylate in vitro. Calcif Tissue Int 62:362–365

    Article  PubMed  Google Scholar 

  10. Mansell JP, Bailey AJ (1998) Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 101:1596–1603

    PubMed  Google Scholar 

  11. Mansell JP, Tarlton JF, Bailey AJ (1997) Biochemical evidence for altered subchondral bone metabolism in osteoarthritis of the hip. Br J Rheumatol 36:16–19

    Article  PubMed  Google Scholar 

  12. Van Beuningen HM, van der Kraan, Arntz JO, van der Berg W (1994) Transforming growth factor-β1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in murine knee joint. Lab Invest 71:279–290

    CAS  PubMed  Google Scholar 

  13. Dieppe P, Cushnaghan J, Young P, Kirwan J (1993) Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 52:557–563

    CAS  PubMed  Google Scholar 

  14. Martinez ME, Sanchez-Cabezudo MJ, Moreno I, Garcez MV, Munuera L (1999) Influence of skeletal site of origin and donor age on 1,25(OH)2D3-induced response of various osteoblastic markers in human osteoblastic cells. Bone 24:203–209

    Article  PubMed  Google Scholar 

  15. Ingle BM, Hay SM, Bottjer HM, Eastell R (1999) Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 10:399–407

    CAS  PubMed  Google Scholar 

  16. Martinez ME, Del Campo MT, Medina S, Sanchez M, Sanchez-Cabezudo MJ, Esbrit P, et al. (1999) Influence of skeletal site of origin and donor age on osteoblastic cell growth and differentiation. Calcif Tissue Int 64:280–286

    Article  PubMed  Google Scholar 

  17. Gunderberg CM, Looker AC, Nieman SD, Calvo MS (2002) Patterns of osteocalcin and bone specific alkaline phosphatase by age, gender, race or ethnicity. Bone 31:703–708

    Article  PubMed  Google Scholar 

  18. Vanderschueren D, Gevers G, Raymaekers G, Devos P, Dequeker J (1990) Sex and age-related changes in bone and serum osteocalcin. Calcif Tissue Int 46:179–182

    PubMed  Google Scholar 

  19. Yasumizu T, Okuno T, Fukada Y, Hoshi K (2000) Age-related changes in bone mineral density and serum-bone-related proteins in premenopausal and postmenopausal Japanese women. Endocr J 47:103–109

    PubMed  Google Scholar 

  20. Westacott CI, Webb GR, Warnok MG, Sims JV, Elson CJ (1997) Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 40:1282–1291

    CAS  PubMed  Google Scholar 

  21. Milgram JV, Jasty M (1982) Osteopetrosis—a morphological study of twenty-one cases. J Bone Joint Surg Am 64:912–929

    PubMed  Google Scholar 

  22. Dequeker J (1997) Inverse relationship of interface between osteoporosis and osteoarthritis. J Rheumatol 24:795–798

    CAS  PubMed  Google Scholar 

  23. Dequeker J, Luyten FP (2003) Bone mass and osteoarthritis. Clin Exp Rheum 18 [Suppl 21]:S21-S26

  24. Geusens P, Vanderschueren D, Verstraeten A, Dequeker J, Devos P, Bouillon R (1991) Short-term course of 1,25(OH)2D3 stimulates osteoblasts but not osteoclasts in osteoporosis and osteoarthritis. Calcif Tissue Int 49:168–173

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the University of Foggia (ex 60% 2001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Cantatore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantatore, F.P., Corrado, A., Grano, M. et al. Osteocalcin synthesis by human osteoblasts from normal and osteoarthritic bone after vitamin D3 stimulation. Clin Rheumatol 23, 490–495 (2004). https://doi.org/10.1007/s10067-004-0928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-004-0928-1

Keywords

Navigation