Skip to main content

Advertisement

Log in

Investigation on the anisotropy of meso-mechanical properties of shale rock using micro-indentation

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Indentation provides a powerful tool for measuring the mechanical properties of shale fragments at the nano- or micro-scale, allowing test with shale cuttings and avoiding the difficulties of coring in horizontal wells, but the meso-mechanical properties and their anisotropy are rarely investigated. Therefore, three types of Longmaxi shale fragments were collected to perform micro-indentation tests, and the meso-mechanical properties, such as hardness, elastic modulus, uniaxial compressive strength (UCS), fracture toughness, and brittleness, in both the bedding plane normal (BPN) and bedding plane parallel (BPP) directions were determined. Finally, the anisotropy of different mechanical properties was compared, and the relationships among mechanical properties, clay minerals, and brittle minerals were discussed. The results indicated that the hardness, elastic modulus, UCS, and brittleness in the BPP direction are higher than those in the BPN direction, while the fracture toughness is opposite. All the mechanical properties in the BPP direction are in positive proportion to those in the BPN direction for these three shales. The hardness, elastic modulus, UCS, and brittleness of the Fuling shale are higher or slightly higher than those of the Changning shale, followed by the Weiyuan shale. All the mechanical properties in both the BPP and BPN directions increase with the brittle minerals. The anisotropy in elastic modulus increases with increasing clay content, the anisotropy in brittleness decreases with increasing clay content, because the anisotropy depends on both the anisotropic clay minerals and the oriented geometric factors of the solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abousleiman YN, Tran M, Hoang S, Ortega JA, Ulm FJ (2010) Geomechanics field characterization of Woodford Shale and Barnett Shale with advanced logging tools and nano-indentation on drill cuttings. Lead Edge 29(6):730–736

    Article  Google Scholar 

  • Alstada KN, Katti KS, Katti DR (2016) Nanoscale morphology of kerogen and in situ nanomechanical properties of green river oil shale. J Nanomech Micromech 6(1):04015003

    Article  Google Scholar 

  • Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech 10(1):1–14

    Article  Google Scholar 

  • Blatt H, Tracy R, Owens B (1996) Petrology: igneous, sedimentary and metamorphic, 2nd edn. W.H. Freeman and Company, NewYork, pp 281–292

    Google Scholar 

  • Bobko C, Ulm FJ (2008) The nano-mechanical morphology of shale. Mech Mater 40(4–5):318–337

    Article  Google Scholar 

  • Bobko CP, Gathier B, Ortega JA, Ulm FJ, Borges L, Abousleiman YN (2011) The nanogranular origin of friction and cohesion in shale—a strength homogenization approach to interpretation of nanoindentation results. Int J Numer Anal Meth Geomech 35(17):1854–1876

    Article  Google Scholar 

  • Chandler MR, Meredith PG, Brantut N, Crawford BR (2016) Fracture toughness anisotropy in shale. J Geophys Res: Solid Earth 121(3):1706–1729

    Article  Google Scholar 

  • Chen P, Han Q, Ma T, Lin D (2015) The mechanical properties of shale based on micro-indentation test. Pet Explor Dev 42(5):723–732

    Article  Google Scholar 

  • Chen Y, Zuo J, Liu D, Li Y, Wang Z (2021) Experimental and numerical study of coal-rock bimaterial composite bodies under triaxial compression. Int J Coal Sci Technol 8(5):908–924

    Article  Google Scholar 

  • Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73(5):614–616

    Article  Google Scholar 

  • Cheshomi A, Hajipour G, Hassanpour J (2017) Estimation of uniaxial compressive strength of shale using indentation testing. J Petrol Sci Eng 151:24–30

    Article  Google Scholar 

  • Cho JW, Kim H, Jeon S, Min KB (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169

    Article  Google Scholar 

  • Das D, Mishra B, Gupta N (2021) Understanding the influence of petrographic parameters on strength of differently sized shale specimens using XRD and SEM. Int J Min Sci Technol 31(5):953–961

    Article  Google Scholar 

  • Deirieh A, Ortega JA, Ulm FJ, Abousleiman Y (2012) Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis. Acta Geotech 7(4):271–295

    Article  Google Scholar 

  • Diao H (2013) Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrologica Sinica 29(9):3300–3306

    Google Scholar 

  • Dong D, Shi Z, Guan Q, Jiang S, Zhang M, Zhang C, Wang S, Sun S, Yu R, Liu D, Peng P (2018) Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin. Natural Gas Industry B 5(5):415–424

    Article  Google Scholar 

  • Du J, Whittle AJ, Hu L, Divoux T, Meegoda JN (2021) Characterization of meso-scale mechanical properties of Longmaxi shale using grid microindentation experiments. J Rock Mech Geotech Eng 13(3):555–567

    Article  Google Scholar 

  • Du K, Li X, Su R, Tao M, Lv S, Luo J, Zhou J (2022) Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression. Int J Min Sci Technol 32(2):347–362

    Article  Google Scholar 

  • Esatyana E, Alipour M, Sakhaee-Pour A (2021) Characterizing anisotropic fracture toughness of shale using nanoindentation. SPE Reservoir Eval Eng 24(3):590–602

    Article  Google Scholar 

  • Fan M, Jin Y, Chen M, Geng Z (2019) Mechanical characterization of shale through instrumented indentation test. J Petrol Sci Eng 174:607–616

    Article  Google Scholar 

  • Geng Z, Chen M, Jin Y, Yang S, Yi Z, Fang X, Du X (2016) Experimental study of brittleness anisotropy of shale in triaxial compression. J Nat Gas Sci Eng 36:510–518

    Article  Google Scholar 

  • Goodarzi M, Rouainia M, Aplin AC, Cubillas P, de Block M (2017) Predicting the elastic response of organic-rich shale using nanoscale measurements and homogenisation methods. Geophys Prospect 65(6):1597–1614

    Article  Google Scholar 

  • Gui J, Ma T, Chen P, Yuan H, Guo Z (2018) Anisotropic damage to hard brittle shale with stress and hydration coupling. Energies 11(4):926

    Article  Google Scholar 

  • Gui J, Guo J, Sang Y, Chen Y, Ma T, Ranjith PG (2022) Evaluation on the anisotropic brittleness index of shale rock using geophysical logging. Petroleum. https://doi.org/10.1016/j.petlm.2022.06.001

    Article  Google Scholar 

  • Gupta I, Sondergeld C, Rai C (2020) Fracture toughness in shales using nano-indentation. J Petrol Sci Eng 191:107222

    Article  Google Scholar 

  • Han Q, Chen P, Ma T (2015) Influencing factor analysis of shale micro-indentation measurement. J Nat Gas Sci Eng 27:641–650

    Article  Google Scholar 

  • Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59(10):1570–1583

    Article  Google Scholar 

  • Huang B, Li L, Tan Y, Hu R, Li X (2020) Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale. J Geophys Res: Solid Earth 125(8):2019JB017828

    Article  Google Scholar 

  • Jin Z, Li W, Jin C, Hambleton J, Cusatis G (2018) Anisotropic elastic, strength, and fracture properties of Marcellus shale. Int J Rock Mech Min Sci 109:124–137

    Article  Google Scholar 

  • Kasyap SS, Senetakis K (2022) Characterization of two types of shale rocks from Guizhou China through micro-indentation, statistical and machine-learning tools. J Petrol Sci Eng 208:109304

    Article  Google Scholar 

  • Li C, Guo D, Zhang Y, An C (2021a) Compound-mode crack propagation law of PMMA semicircular-arch roadway specimens under impact loading. Int J Coal Sci Technol 8(6):1302–1315

    Article  Google Scholar 

  • Li C, Yang D, Xie H, Ren L, Wang J (2021b) Research on the anisotropic fracture behavior and the corresponding fracture surface roughness of shale. Eng Fract Mech 255:107963

    Article  Google Scholar 

  • Li JH, Li BB, Cheng QY, Gao Z (2022) Characterization of the fracture compressibility and its permeability for shale under the effects of proppant embedment and compaction: a preliminary study. Pet Sci 19(3):1125–1138

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Bubach B (2016) Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. J Nat Gas Sci Eng 35:1310–1319

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Bubach B, Ling K, Tokhmechi B, Robert D (2018) Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale. J Nat Gas Sci Eng 53:181–190

    Article  Google Scholar 

  • Liu K, Ostadhassan M, Xu X (2020a) A comparison study of the unloading behavior in shale samples in nanoindentation experiments using different models. J Petrol Sci Eng 186:106715

    Article  Google Scholar 

  • Liu Y, Ma T, Wu H, Chen P (2020b) Investigation on mechanical behaviors of shale cap rock for geological energy storage by linking macroscopic to mesoscopic failures. Journal of Energy Storage 29:101326

    Article  Google Scholar 

  • Lu Y, Li Y, Wu Y, Luo S, Jin Y, Zhang G (2020) Characterization of shale softening by large volume-based nanoindentation. Rock Mech Rock Eng 53(3):1393–1409

    Article  Google Scholar 

  • Łukomski M, Bridarolli A, Fujisawa N (2022) Nanoindentation of historic and artists’ paints. Appl Sci 12(3):1018

    Article  Google Scholar 

  • Ma T, Chen P (2014) Study of meso-damage characteristics of shale hydration based on CT scanning technology. Pet Explor Dev 41(2):249–256

    Article  Google Scholar 

  • Ma T, Chen P (2015) A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs. J Nat Gas Sci Eng 26:72–98

    Article  Google Scholar 

  • Ma D, Ong CW, Lu J, He J (2003) Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip. J Appl Phys 94(1):288–294

    Article  Google Scholar 

  • Ma D, Ong CW, Wong SF, He J (2005) New method for determining Young’s modulus by non-ideally sharp indentation. J Mater Res 20(6):1498–1506

    Article  Google Scholar 

  • Ma T, Yang C, Chen P, Wang X, Guo Y (2016) On the damage constitutive model for hydrated shale using CT scanning technology. J Nat Gas Sci Eng 28:204–214

    Article  Google Scholar 

  • Ma T, Peng N, Zhu Z, Zhang Q, Yang C, Zhao J (2018) Brazilian tensile strength of anisotropic rocks: review and new insights. Energies 11(2):304

    Article  Google Scholar 

  • Ma Z, Ranjith PG, Zhang C (2020) Application of nanoindentation technology in rocks: a review. Geomech Geophys Geo-Energy Geo-Resour 6(4):1–27

    Google Scholar 

  • Ma T, Wang H, Liu Y, Shi Y, Ranjith PG (2022) Fracture initiation pressure model of inclined wells in transversely isotropic formation with anisotropic tensile strength. Int J Rock Mech Min Sci 159:105235

    Article  Google Scholar 

  • Ma T, Wang H, Liu Y, Fu C, Ranjith PG (2023) Experimental investigation on the anisotropy of mode-I fracture and tensile failure of layered shale. Eng Fract Mech 290:109484

    Article  Google Scholar 

  • Manjunath GL, Jha B (2019) Geomechanical characterization of gondwana shale across nano-micro-meso scales. Int J Rock Mech Min Sci 119:35–45

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Ortega JA, Ulm FJ, Abousleiman YN (2010) The effect of particle shape and grain-scale properties of shale: a micromechanics approach. Int J Numer Anal Meth Geomech 34(11):1124–1156

    Article  Google Scholar 

  • Peng N, Ma T, Zhu G, Su Q (2023) Anti-drilling ability of Ziliujing conglomerate formation in Western Sichuan Basin of China. Petroleum 9(1):41–52

    Article  Google Scholar 

  • Qiu Y, Ma T, Liu J, Peng N, Xiang G, Liu Y, Ranjith PG (2023a) Poroelastic response of inclined wellbore geometry in anisotropic fractured shale formations. Int J Rock Mech Min Sci 170:105560

    Article  Google Scholar 

  • Qiu Y, Ma T, Peng N, Liu Y, Liu J, Ranjith PG (2023b) Wellbore stability analysis of inclined wellbore in transversely isotropic formations accounting for hydraulic-mechanical coupling. Geoenergy Sci Eng 224:211615

    Article  Google Scholar 

  • Quinn JB, Quinn GD (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Sci 32(16):4331–4346

    Article  Google Scholar 

  • Rybacki E, Reinicke A, Meier T, Makasi M, Dresen G (2015) What controls the mechanical properties of shale rocks?—part I: strength and Young’s modulus. J Petrol Sci Eng 135:702–722

    Article  Google Scholar 

  • Sayers CM (1994) The elastic anisotropy of shales. J Geophys Res: Solid Earth 99(B1):767–774

    Article  Google Scholar 

  • Sheng M, Cheng SZ, Lu ZH, Zhang Y, Tian SC, Li GS (2022) Influence of formation in-situ stress on mechanical heterogeneity of shale through grid nanoindentation. Pet Sci 19(1):211–219

    Article  Google Scholar 

  • Shi X, Jiang S, Lu S, He Z, Li D, Wang Z, Xiao D (2019) Investigation of mechanical properties of bedded shale by nanoindentation tests: a case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing China. Pet Explor Dev 46(1):163–172

    Article  Google Scholar 

  • Su X, Chen P, Ma T (2019) Evaluation of shale fracture toughness based on micrometer indentation test. Petroleum 5(1):52–57

    Article  Google Scholar 

  • Tan J, Horsfield B, Fink R, Krooss B, Schulz HM, Rybacki E, Zhang J, Boreham CJ, Van Graas G, Tocher BA (2014) Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, south China, Part III: mineralogical, lithofacial, petrophysical, and rock mechanical properties. Energy Fuels 28(4):2322–2342

    Article  Google Scholar 

  • Ulm FJ, Abousleiman YN (2006) The nanogranular nature of shale. Acta Geotech 1(2):77–88

    Article  Google Scholar 

  • Ulm FJ, Vandamme M, Bobko C, Ortega JA, Tai K, Ortiz C (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90(9):2677–2692

    Article  Google Scholar 

  • Wang H, Ma T, Liu Y, Wu B, Ranjith PG (2023) Numerical and experimental investigation on the anisotropic tensile behavior of layered rocks in 3D space under Brazilian test conditions. Int J Rock Mech Min Sci 170:105558

    Article  Google Scholar 

  • Wu Y, Li Y, Luo S, Lu M, Zhou N, Wang D, Zhang G (2020) Multiscale elastic anisotropy of a shale characterized by cross-scale big data nanoindentation. Int J Rock Mech Min Sci 134:104458

    Article  Google Scholar 

  • Zhang D, Ranjith PG, Perera MSA (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Petrol Sci Eng 143:158–170

    Article  Google Scholar 

  • Zhang WG, Zhang RH, Han L, Goh A, T.C. (2019) Engineering properties of Bukit Timah Granitic residual soils in Singapore DTL2 braced excavations. Underground Space 4(2):98–108

    Article  Google Scholar 

  • Zhang L, He X, Li X, Li K, He J, Zhang Z, Guo J, Chen Y, Liu W (2022) Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures. Natural Gas Industry B 9(2):176–186

    Article  Google Scholar 

  • Zhang Q, Yao B, Fan X, Li Y, Fantuzzi N, Ma T, Chen Y, Zeng F, Li X, Wang L (2023) A failure criterion for shale considering the anisotropy and hydration based on the shear slide failure model[J]. Int J Min Sci Technol 33(4):447–462

    Article  Google Scholar 

  • Zhao J, Ren L, Jiang T, Hu D, Wu L, Wu J, Yin C, Li Y, Hu Y, Lin R, Li X (2022) Ten years of gas shale fracturing in China: review and prospect. Natural Gas Industry B 9(2):158–175

    Article  Google Scholar 

  • Zou C, Qiu Z, Zhang J, Li Z, Wei H, Liu B, Zhao J, Yang T, Zhu S, Tao H, Zhang F, Wang Y, Zhang Q, Liu W, Liu H, Feng Z, Liu D, Gao J, Liu R, Li Y (2022) Unconventional petroleum sedimentology: a key to understanding unconventional hydrocarbon accumulation. Engineering 18:62–78

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51604230), the Program of Introducing Talents of Discipline to Chinese Universities (111 Plan) (Grant No. D18016), and the Ministry of Science and Higher Education of the Russian Federation (Grant No. FSNM-2023–0005).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tianshou Ma; methodology: Keyan Liu and Xue Su; formal analysis and investigation: Tianshou Ma, Keyan Liu, Xue Su, P.G. Ranjith, and Dmitriy A. Martyushev; writing — original draft preparation: Tianshou Ma, Keyan Liu, and Xue Su; writing — review and editing: Tianshou Ma, P.G. Ranjith, Dmitriy A. Martyushev; funding acquisition: Tianshou Ma and Ping Chen; supervision: Ping Chen.

Corresponding author

Correspondence to Tianshou Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Liu, K., Su, X. et al. Investigation on the anisotropy of meso-mechanical properties of shale rock using micro-indentation. Bull Eng Geol Environ 83, 29 (2024). https://doi.org/10.1007/s10064-023-03510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03510-y

Keywords

Navigation