Skip to main content

Advertisement

Log in

Geotechnical properties of Sines Contourite Drift sediments: their contribution to submarine landslide susceptibility

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The Sines Contourite Drift (SCD) in the Alentejo Margin (southwest Iberia margin) is a middle-slope plastered drift mainly comprising hemipelagic and muddy contourite sediments, which is affected by many landslide scars on both steep and gentle slopes. This work presents geotechnical analysis results for the Late Pleistocene–Holocene sediments of this drift. Analyses are conducted involving samples of a 346-cm-long gravity core, retrieved at 1425 m water depth, through consolidation (oedometer), compressional (triaxial), and simple shear tests. The landslide susceptibility in the area is assessed considering the sediment mechanical properties. The results indicate that the upper 346 cm below the seafloor consists of low consolidated to slightly overconsolidated hemipelagic sediments, with few thin muddy contourite layers, exhibiting a high water content, void ratio, and in situ effective consolidation < 50 kPa. The low sediment consolidation is mostly promoted by a high compressibility. The low consistency and plastic behavior of sediments can be expressed through a barrel-shaped disruption mode under compression. Once under stress, the horizontal and vertical displacements of these sediments generally remain constant with increasing stress, where almost no, or a very low, peak strength is verified. The internal friction angle values vary between 25.6° and 30.9° with a mean value of 28.5°. The low consolidation and high pore pressure of these sediments associated with seismicity dynamism in the area are important conditioning and triggering factors, respectively, of slope instability, thereby greatly increasing the shallow landslide susceptibility of gentle slopes. A peak ground acceleration of 0.24 could explain ~ 91% of the landslide scars in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alves T, Gawthorpe R, Hunt D, Monteiro JH (2003) Cenozoic tectono Mediterranean-sedimentary evolution of the western Iberian margin. Mar Geol 195:75–108. https://doi.org/10.1016/S0025-3227(02)00683-7

    Article  Google Scholar 

  • Alves T, Moita C, Cunha T, Monteiro J (2009) Structural evolution and timing of continental rifting in the Northeast Atlantic, West Iberian Margin. In: 71st EAGE Conference and Exhibition Incorporating SPE EUROPEC 2009

  • Ambar I, Howe M (1979) Observations of the Mediterranean outflow-II. The deep circulation in the vicinity of the Gulf of Cadiz. Deep-Sea Res 26:555–568

    Article  Google Scholar 

  • Ambraseys N, Douglas J, Sarma SK (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3(1):1–53. https://doi.org/10.1007/s10518-005-0183-0

    Article  Google Scholar 

  • ASTM-D2487 (1985) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International West Conshohocken, PA 3:12

  • ASTM-D6528 (2017) Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Fine Grain Soils. ASTM International West Conshohocken, PA 19428–2959:10

  • Baeten N, Laberg J, Vanneste M, Forsberg C, Kvalstad T, Forwick M, Vorren T, Haflidason H (2014) Origin of Shallow Submarine Mass Movements and their Glide Planes - Sedimentological and Geotechnical Analyses from the Continental Slope Off Northern Norway. J Geophys Res Earth Surf 119:1–26. https://doi.org/10.1002/2013JF003068

    Article  Google Scholar 

  • Bahr A, Kaboth S, Jiménez-Espejo F, Sierro F, Voelker AHL, Lourens L, Röhl U, Reichart G, Escutia C, Hernández-Molina FJ, Pross J, Friedrich O (2015) Persistent monsoonal forcing of mediterranean outflow water dynamics during the late pleistocene. Geology 43:951–954. https://doi.org/10.1130/G37013.1

    Article  Google Scholar 

  • Baraza J, Ercilla G, Lee H (1992) Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the northwestern alboran sea. Geo-Mar Lett 12:150–156

    Article  Google Scholar 

  • Baraza J, Lee H, Kayen R, Hampton M (1990) Geotechnical characteristics and slope stability on the Ebro margin, western Mediterranean. Mar Geol 95:379–393

    Article  Google Scholar 

  • Bishop AW (1971) Shear strength parameters for undisturbed and remoulded soil specimens. In: Parry RHG (ed) Stress-Strain Behaviour of Soils Proc. Roscoe Memorial Symposium, Cambridge University, Cambridge. Foulis, pp 1–59

  • Boillot G, Girardeau J, Kornprobst J (1989) Rifting of the west galicia continental margin: A review. Bulletin De La Société Geologique De France 8:393–400

    Article  Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005a) Explaining the Storegga slide. Mar Pet Geol 22:11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003

    Article  Google Scholar 

  • Bryn P, Berg K, Stoker M, Haflidason H, Solheim A (2005b) Contourites and their relevance for mass wasting along the mid-Norwegian margin. Mar Pet Geol 22:85–96

    Article  Google Scholar 

  • Bugge T, Belderson R, Kenyon N (1988) The storegga slide. Philos Trans R Soc London 325:357–388

    Article  Google Scholar 

  • Casagrande A (1936) The determination of the pre-consolidation load and its practical significance. In: Casagrande A (ed) Proceedings of 1st International Soil Mechanics and Foundation Engineering Conference, Cambridge, Mass., 22–26 June 1936, vol 3. Graduate School of Engineering, Harvard University, Cambridge, Mass, pp 60–64

  • Casas D, Casalbore D, Yenes M, Urgeles R (2015) Submarine mass movements around the Iberian peninsula. The building of continental margins through hazardous processes. Boletin Geologico y Minero 126:257–278

    Google Scholar 

  • Cattaneo A, Jouet G, Charrier S, Théreau E, Riboulot V (2014) Submarine Landslides and Contourite Drifts Along the Pianosa Ridge (Corsica Trough, Mediterranean Sea). In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine Mass Movements and Their Consequences, vol 37. Advances in Natural and Technological Hazards Research, pp 435–445

  • CEN ISO/TS 17892–3 (2004) Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 3: Determination of particle density CEN Brussels

  • CEN ISO/TS 17892–4 (2004) Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 4: Determination of particle size distribution CEN Brussels

  • CEN ISO/TS-17892-5 (2004) Geotechnical Investigation and Testing - Laboratory Testing of Soil - Part 5: Incremental loading oedometer test CEN Brussels

  • CEN ISO/TS-17892-9 (2004) Geotechnical Investigation and Testing - Laboratory Testing of Soil - Part 9: Consolidated Triaxial Compression on Water Saturated Soil CEN Brussels

  • CEN ISO/TS 17892–12 (2004) Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 12: Determination of Atterberg limits CEN Brussels

  • Cherubin L, Carton X, Paillet J, Morel Y, Serpatte A (2000) Instability of the Mediterranean water undercurrents southwest of Portugal: Effects of baroclinicity and topography. Oceanological Acta 23:551–573

    Article  Google Scholar 

  • Collico S, Arroyo M, Urgeles R, Gràcia E, Devincenzi M, Peréz N (2020) Probabilistic mapping of earthquake-induced submarine landslide susceptibility in the south-west Iberian margin. Mar Geol 429. https://doi.org/10.1016/j.margeo.2020.106296

  • Custódio S, Lima V, Vales D, Cesca S, Carrilho F (2016) Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores - western Mediterranean region. Tectonophysics 676:70–89

    Article  Google Scholar 

  • Ercilla G, Juan C, Hernández-Molina J, Bruno M, Estrada F, Alonso B, Casas D, Farran M, Llave E, García M, Vázquez J, D’Acremont E, Gorini C, Palomino D, Valencia J, El Moumni B, Ammar A (2016) Significance of bottom currents in deep-sea morphodynamics: An example from the alboran sea. Mar Geol 378:157–170

    Article  Google Scholar 

  • Faugères J-C, Stow D, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Flemings PB, Long H, Dugan B, Germaine J, John CM, Behrmann JH, Sawyer D, IODP Expedition 308 Scientists (2008) Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet Sci Lett 274:269–283. https://doi.org/10.1016/j.epsl.2008.06.027

  • Gatter R, Clare MA, Hunt JE, Watts M, Madhusudhan BN, Talling PJ, Huhn K (2020) A multi-disciplinary investigation of the AFEN Slide: the relationship between contourites and submarine landslides. Geological Society, London, Special Publications 500:173–193. https://doi.org/10.1144/SP500-2019-184

    Article  Google Scholar 

  • General Bathymetric Chart of the Oceans, Gebco (2003) British Oceanographic Data Centre on behalf of IOC and IHO. GEBCO Digital Atlas. Available online at: https://www.gebco.net

  • Georgiadis K, Potts D, Zdravkovic L (2004) Modelling the shear strength of soils in the general stress space. Comput Geotech 31:357–364. https://doi.org/10.1016/j.compgeo.2004.05.002

    Article  Google Scholar 

  • Gràcia E, Vizcaino A, Escutia C, Asioli A, Rodés A, Pallàs R, Garcia-Orellana J, Lebreiro S, Goldfinger C (2010) Holocene earthquake record offshore Portugal (SW Iberia): Testing turbidite paleoseismology in a slow-convergence margin. Quatern Sci Rev 29:1156–1172

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hampton M, Lee H, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. https://doi.org/10.1029/95RG03287

    Article  Google Scholar 

  • Head K (1982) Manual of Soil Laboratory Testing - Permeability, Shear Strength and Compressibility Tests, vol 2. John Wiley & Sons, New York

    Google Scholar 

  • Hernández-Molina FJ, Ercilla G, Casas D, and MOWER Team (2014a) Rasgos erosivos y depósitos arenosos generados por la mow alrededor de Iberia: Implicaciones paleoceanográficas, sedimentarias y económicas. Informe Científico Campaña Oceanográfica MOWER, pp 111

  • Hernández-Molina FJ, Serra N, Stow D, Llave E, Ercilla G, Van Rooij D (2011) Alongslope oceanographic processes and sedimentary products around the Iberian margin. Geo-Mar Lett 31:315–341

    Article  Google Scholar 

  • Hernández-Molina FJ, Sierro F, Llave E, Roque C, Stow D, Williams T, Lofi J, Van der Schee M, Arnáiz A, Ledesma S, Rosales C, Rodríguez-Tovar F, Pardo-Igúzquiza E, Brackenridge R (2016) Evolution of the gulf of cadiz margin and southwest portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP Expedition 339. Mar Geol 377:7–39

    Article  Google Scholar 

  • Hernández-Molina FJ, Stow D, Alvarez-Zarikian C, Acton G, Bahr A, Balestra B, Ducassou E, Flood R, Flores J, Furota S, Grunert P, Hodell D, Jimenez-Espejo F, Kim J, Krissek L, Kuroda J, Li B, Llave E, Lofi J, Lourens L, Miller M, Nanayama F, Nishida N, Richter C, Roque C, Pereira H, Sanchez Goñi M, Sierro F, Singh A, Sloss C, Takashimizu Y, Tzanova A, Voelker A, Williams T, Xuan C (2014b) Onset of mediterranean outflow into the north atlantic. Science 344:1244–1250

    Article  Google Scholar 

  • Hernández-Molina FJ, Stow D, Alvarez-Zarikian C, Expedition 339 Scientists, (2013) IODP Expedition 339 in the Gulf of Cadiz and off west Iberia: Decoding the environmental significance of the Mediterranean outflow water and its global influence. Sci Drill 16:1–11. https://doi.org/10.5194/sd-16-1-2013

  • Ikari M, Kopf A (2015) The role of cohesion and overconsolidation in submarine slope failure. Mar Geol 369:153–161. https://doi.org/10.1016/j.margeo.2015.08.012

    Article  Google Scholar 

  • Jibson RW (2011) Methods for assessing the stability of slopes during earthquakes – A retrospective. Eng Geol 122:43–50. https://dx.doi.org/10.1016/j.enggeo.2010.09.017

    Article  Google Scholar 

  • Kohavi R, Provost F (1998) On Applied Research in Machine Learning. In University C (ed) Special Issue on Applications of Machine Learning and the Knowledge Discovery Process. New York

  • Krastel S, Wefer G, Hanebuth T, Antobreh A, Freudenthal T, Preu B, Schwenk T, Strasser M, Violante R, Winkelmann D, M78/3 shipboard scientific party (2011) Sediment dynamics and geohazards off uruguay and the de la plata river region (northern argentina and uruguay). Geo-Mar Lett 31:271–283. https://doi.org/10.1007/s00367-011-0232-4

  • Kvalstad T, Andresen L, Forsberg C, Berg K, Bryn P, Wangen M (2005a) The storegga slide: Evaluation of triggering sources and slide mechanics. Mar Pet Geol 22:245–256. https://doi.org/10.1016/j.marpetgeo.2004.10.019

    Article  Google Scholar 

  • Kvalstad T, Nadim F, Kaynia A, Mokkelbost K, Bryn P (2005b) Soil conditions and slope stability in the ormen lange area. Mar Pet Geol 22:299–310. https://doi.org/10.1016/j.marpetgeo.2004.10.021

    Article  Google Scholar 

  • Laberg J, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in Sedimentology, vol 60. Elsevier, Amsterdam, pp 537–556

  • Laberg J, Stoker M, Dahlgren K, de Haas H, Haflidason H, Hjelsteun B, Nielsen T, Shannon P, Vorren T, van Weereing T, Ceramicola S (2005) Cenozoic alongslope processes and sedimentation on the NW European Atlantic margin. Mar Pet Geol 22:1069–1088. https://doi.org/10.1016/j.marpetgeo.2005.01.008

    Article  Google Scholar 

  • Laberg J, Vorren T (2000) The Trænadjupet Slide, offshore Norway - morphology, evacuation and triggering mechanisms. Mar Geol 171:95–114

    Article  Google Scholar 

  • Laberg J, Vorren T, Mienert J, Bryn P, Lien R (2002) The Trænadjupet Slide: a large slope failure affecting the continental margin of Norway 4,000 years ago. Geo-Mar Lett 22(1):19–24

    Article  Google Scholar 

  • Lade P (2016) Triaxial testing of soils. John Wiley & Sons, Chichester, United Kingdom

    Book  Google Scholar 

  • Lee C, Yun T, Lee J-S, Bahk J, Santamarina C (2011) Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea. Eng Geol 117:151–158

    Article  Google Scholar 

  • Lee H, Baraza J (1999) Geotechnical characteristics and slope stability in the Gulf of Cadiz. Mar Geol 155:173–190

    Article  Google Scholar 

  • Lee H, Syvitski J, Parker G, Orange D, Locat J, Hutton E, Imran J (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the ‘Humboldt slide’, and modelling results. Mar Geol 192:79–104

    Article  Google Scholar 

  • Llave E, Hernández-Molina J, Somoza L, Stow D, Díaz Del Río V (2007) Quaternary evolution of the contourite depositional system in the Gulf of Cadiz. In: Viana A, Rebesco M (eds) Economic and paleoceanographic importance of contourites. Special Publication, Geological Society of London, pp 49–79

    Google Scholar 

  • Locat J (2001) Instabilities along ocean margins: A geomorphological and geotechnical perspective. Mar Pet Geol 18:503–512

    Article  Google Scholar 

  • Martorelli E, Bosman A, Casalbore D, Falcini F (2016) Interaction of down-slope and along-slope processes off Cape Vaticano (southern Tyrrhenian Sea, Italy), with particular reference to contourite-related landslides. Mar Geol 378:43–55. https://doi.org/10.1016/j.margeo.2016.01.005

    Article  Google Scholar 

  • Masson D, Harbitz C, Wynn R, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc London 364:2009–2039

    Article  Google Scholar 

  • McAdoo B, Capone M, Minder J (2004) Seafloor geomorphology of convergent margins: Implications for Cascadia seismic hazard. Tectonics 23:TC6008. https://doi.org/10.1029/2003TC001570

  • Mencaroni D, Llopart J, Urgeles R, Lafuerza S, Gràcia E, Le Friant A, Urlaub M (2020) From gravity cores to overpressure history: The importance of measured sediment physical properties in hydrogeological models. Geological Society, London, Special Publications. https://doi.org/10.1144/SP500-2019-176

    Article  Google Scholar 

  • Minning M, Hebbeln D, Hensen C, Kopf A (2006) Geotechnical and geochemical investigations of the Marquês de Pombal landslide at the Portuguese continental margin. Norw J Geol 86:187–198

    Google Scholar 

  • Miramontes E, Garziglia S, Sultan N, Jouet G, Cattaneo A (2018) Morphological control of slope instability in contourites: A geotechnical approach. Landslides 15:1085–1095. https://doi.org/10.1007/s10346-018-0956-6

    Article  Google Scholar 

  • Morgenstern NR (1967) Submarine slumping and the initiation of turbidity currents. In: Richards A (ed) Marine Geotechnique. Univ. of Ill, Press, Urbana, pp 189–210

    Google Scholar 

  • Pardo G, Orense R, Sarmah A (2018) Cyclic strength of sand mixed with biochar: Some preliminary results. Soils Found 58:241–247

    Article  Google Scholar 

  • Pereira R, Alves T (2011) Margin segmentation prior to continental break-up: a seismic–stratigraphic record of multiphased rifting in the North Atlantic (Southwest Iberia). Tectonophysics 505(1):17–34

    Article  Google Scholar 

  • Pereira R, Alves T (2013) Crustal deformation and submarine canyon incision in a Meso-Cenozoic first-order transfer zone (SW Iberia, North Atlantic Ocean). Tectonophysics 601:148–162

    Article  Google Scholar 

  • Pinheiro L, Wilson R, Pena dos Reis R, Whitmarsh R, Ribeiro A (1996) The Western Iberia Margin: a geophysical and geological overview. In: Proceedings of the Ocean Drilling Program, Scientific Results, pp 3–23

  • Piper D, Aksu A (1987) The source and origin of the 1929 grand banks turbidity current inferred from sediment budgets. Geo-Mar Lett 7:177–182

    Article  Google Scholar 

  • Preu B, Hernández-Molina FJ, Violante R, Piola AR, Paterlini CM, Schwenk T, Voigt I, Krastel S, Spiess V (2013) Morphosedimentary and hydrographic features of the northern argentine margin: The interplay between erosive, depositional and gravitational processes and its conceptual implications. Deep Sea Res Part 1 Oceanogr Res Pap 75:157–174

    Article  Google Scholar 

  • Puzrin A, Gray T, Hill A (2015) Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides. Proc R Soc A 471:20140772. https://doi.org/10.1098/rspa.2014.0772

    Article  Google Scholar 

  • Raia S, Alvioli M, Rossi M, Baum RL, Godt J, Guzzetti F (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: A probabilistic approach. Geosci Model Dev. https://doi.org/10.5194/gmd-7-495-2014

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Mar Geol 352:111–154

    Article  Google Scholar 

  • Rogerson M, Rohling E, Weaver P, Murray J (2005) Glacial to interglacial changes in the settling depth of the Mediterranean Outflow plume. Paleoceanography 20:PA3007. https://doi.org/10.1029/2004PA001106

  • Salgueiro E, Naughton F, Voelker AHL, Abreu L, Alberto A, Rossignol L, Duprat J, Magalhães V, Vaqueiro S, Turone J-L, Abrantes F (2014) Past circulation along the western Iberian margin: a time slice visionfrom the Last Glacial to the Holocene. Quatern Sci Rev 106:316–329. https://doi.org/10.1016/j.quascirev.2014.09.001

    Article  Google Scholar 

  • Schmertmann J (1955) The undisturbed consolidation of clay. Transactions, ASCE 120:1201–1233

    Google Scholar 

  • Schönfeld J, Zahn R (2000) Late Glacial to Holocene history of the Mediterranean Outflow. Evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin. Palaeogeography. Palaeoclimatol, Palaeoecol 159:85–811

    Article  Google Scholar 

  • Schultheiss P (1989) Pore Pressures in Marine Sediments: An Overview of Measurement Techniques and Some Geological and Engineering Applications. Mar Geophys Res 12:153–168

    Article  Google Scholar 

  • Serra N, Ambar I (2002) Eddy generation in the Mediterranean undercurrent. Deep-Sea Res II 49:4225–4243

    Article  Google Scholar 

  • Sharma S (2002) Slope Stability Concepts. In: Abramson LW, Lee TS, Sharma S and Boyce GM (eds) Slope Stability and Stabilization Methods. New York. John Wiley & Sons, Inc., pp 329 – 461

  • Silva S, Terrinha P, Matias L, Duarte J, Roque C, Ranero C, Geissler W, Zitellini N (2017) Micro-seismicity in the Gulf of Cadiz: is there a link between micro-seismicity, high magnitude earthquakes, and active faults? Tectonophysics 717:226–241

    Article  Google Scholar 

  • Skempton AW (1954) The Pore pressure Coefficients A and B. Géotechnique 4:143–147

    Article  Google Scholar 

  • Srivastava S, Schouten H, Roest W, Klitgord K, Kovacs L, Verhoef J, Macnab R (1990) Iberian Plate kinematics - a jumping plate boundary between Eurasia and Africa. Nature 344:756–759

    Article  Google Scholar 

  • Stich D, Martín R, Morales J (2010) Moment tensor inversion for Iberia-Maghreb earthquakes 2005–2008. Tectonophysics 483:390–398

    Article  Google Scholar 

  • Stigall J, Dugan B (2010) Overpressure and earthquake initiated slope failure in the Ursa Region, northern Gulf of Mexico. J Geophys Res 115:B04101. https://doi.org/10.1029/2009JB006848

    Article  Google Scholar 

  • Stow DA, Faugères JC, Howe JA, Pudsey CJ, Viana A (2002) Bottom currents, contourites, and deep-sea sediment drifts: current state-of-the-art. Geological Society, London, Memoirs 22(1):7–20

    Article  Google Scholar 

  • Stow D, Hernández-Molina J, Alvarez-Zarikian C, Expedition 339 Scientists (2013) Expedition 339 summary. In: IODP (ed) Proceedings of the Integrated Ocean Drilling Program, vol 339

  • Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg J, Long D, Mienert J, Trincardi F, Urgeles R, Vorren T, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321

    Article  Google Scholar 

  • Talling P (2014) On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar Geol 352:155–182

    Article  Google Scholar 

  • Teixeira M (2020) Mass movement processes in the Southwest Portuguese Continental Margin during the Late Pleistocene-Holocene: a multidisciplinary approach for volume quantification, estimation of recurrence times and hazard implications. Ph.D. Thesis, University of Lisbon

  • Teixeira M, Terrinha P, Roque C, Rosa M, Ercilla G, Casas D (2019) Interaction of alongslope and downslope processes in the Alentejo Margin (SW Iberia) – implications on slope stability. Mar Geol 410:88–108. https://doi.org/10.1016/j.margeo.2018.12.011

    Article  Google Scholar 

  • Teixeira M, Terrinha P, Roque C, Voelker AHL, Silva P, Salgueiro E, Abrantes F, Naughton F, Mena A, Ercilla G, Casas D (2020) The Late Pleistocene-Holocene sedimentary evolution of the Sines contourite drift (SW Portuguese margin): A multiproxy approach. Sed Geol 407:105737. https://doi.org/10.1016/j.sedgeo.2020.105737

    Article  Google Scholar 

  • Terrinha P, Pinheiro L, Henriet J, Matias L, Ivanov M, Monteiro J, Akhmetzhanov A, Volkonskaya A, Cunha T, Shaskin P, Rovere M (2003) Tsunamigenic–seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Mar Geol 195(1–4):55–73

    Article  Google Scholar 

  • Terrinha P, Ramos A, Neres M, Valadares V, Duarte J, Martínez-Loriente S, Silva S, Mata J, Kullberg J, Casas-Sainz A, Matias L, Fernández O, Anton Muñoz J, Ribeiro C, Font E, Neves C, Roque C, Rosas F, Pinheiro L, Bartolomé R, Sallarès V, Magalhães V, Medialdea T, Somoza L, Gràcia E, Hensen C, Gutscher MA, Ribeiro A, Zitellini N (2019) The alpine orogeny in the west and southwest Iberia margins. In: Quesada C, Oliveira J (eds) The geology of Iberia: A geodynamic approach, regional geology reviews. pp 487 – 505

  • Terzaghi K, Peck R (1948) Soil mechanics in engineering practice. John Wiley & Sons, New York

    Google Scholar 

  • Toucanne S, Mulder T, Schoenfeld J, Hanquiez V, Gonthier E, Duprat J, Cremer M, Zaragosi S (2007) Contourites of the Gulf of Cadiz: A high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 246:354–366

    Article  Google Scholar 

  • Urlaub M (2013) The role of sedimentation rate on the stability of low gradient submarine continental slopes. Ph.D. Thesis, University of Southampton

  • Urlaub M, Talling P, Zervos A, Masson D (2015) What causes large submarine landslides on low gradient (< 2º) continental slopes with slow (~0.15 m/kyr) sediment accumulation? J Geophys Res: Solid Earth 120:6722–6739. https://doi.org/10.1002/2015JB012347

    Article  Google Scholar 

  • Urlaub M, Zervos A, Talling P, Masson D, Clayton C (2012) How do ~2° slopes fail in areas of slow sedimentation? A sensitivity study on the influence of accumulation rate and permeability on submarine slope stability. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 31. Dordrecht: Springer, pp 277 - 287

  • Urgeles R, Locat J, Lee HJ, Martin F (2002) The Saguenay Fjord, Quebec, Canada: integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment. Mar Geol 185:319–340

    Article  Google Scholar 

  • Urgeles R, Locat J, Sawyer D, Flemings P, Dugan B, Binh N (2010) History of pore pressure build-up and slope instability in mud-dominated sediments of Ursa Basin, Gulf of Mexico Continental Slope. In: Mosher D, Shipp R, Moscardelli L, Chaytor J, Baxter C, Lee HJ, Urgeles R (eds) Submarine Mass Movements and Their Consequences, Dordrecht. Springer Netherlands, pp 179–190

  • Veludo I, Dias N, Fonseca P, Matias L, Carrilho F, Haberland C, Villaseñor A (2017) Crustal seismic structure beneath Portugal and southern Galicia (Western Iberia) and the role of Variscan inheritance. Tectonophysics 717:645–664

    Article  Google Scholar 

  • Viana da Fonseca A (1996) Geomechanics in residual soils from Porto granite. Criteria for the design of shallow foundations. Ph.D. Thesis, University of Porto

  • Viana da Fonseca A, Ferreira C, Fahey M (2009) A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods. Geotech Test J 32(2). https://doi.org/10.1520/GTJ100974

  • Viana da Fonseca A, Ferreira C, Soares M, Klar A (2015) Improved laboratory techniques for advanced geotechnical characterization towards matching in situ properties. Paper presented at the Deformation Characteristics of Geomaterials. Keynote lecture in 6th ISDCG, Buenos Aires

  • Viana da Fonseca A, Almeida e Sousa J, Cardoso A, Matos Fernandes M (2020) Finite element analyses of a shallow foundation on a residual soil from granite using Lade’s model. In Matos Fernandes M (ed) Applications of Computational Mechanics in Geotechnical Engineering. pp 69–77. https://doi.org/10.1201/9781003078562-8

  • Voelker AHL, Lebreiro S, Schönfeld J, Cacho I, Erlenkeuser H, Abrantes F (2006) Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic? Earth Planet Sci Lett 245(1–2):39–55. https://doi.org/10.1016/j.epsl.2006.03.014

    Article  Google Scholar 

  • Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M, Urrutia R, Ladrón de Guevara B, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci 104(5):1439–1457. https://doi.org/10.1007/s00531-015-1144-8

    Article  Google Scholar 

  • Wroth CP (1984) The interpretation of in situ soil tests. Geotechnique 34(4):449–489

    Article  Google Scholar 

  • Yenes M, Monetrrubio S, Nespereira J, Casas D (2020) Apparent overconsolidation and its implications for submarine landslides. Eng Geol 264. https://doi.org/10.1016/j.enggeo.2019.105375

  • Yenes M, Casas D, Nespereira J, López-González N, Casalbore D, Monterrubio S, Alonso B, Ercilla G, Juan C, Bárcenas P, Palomino D, Mata P, Martínez-Díaz P, Pérez N, Vázquez JT, Estrada F, Azpiroz-Zabala M, Teixeira M (2021) The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach for its stability analysis. Marine Geol 437:106505. https://doi.org/10.1016/j.margeo.2021.106505

  • Zenk W, Armi L (1990) The complex spreading pattern of Mediterranean water off the Portuguese continental slope. Deep-Sea Res 37:1805–1823

    Article  Google Scholar 

  • Zhang Y, Huang F, Lai G (2009) Research on Skempton’s coefficient B based on the observation of groundwater of Changping station. Earthq Sci 22:631–638. https://doi.org/10.1007/s11589-009-0631-z

    Article  Google Scholar 

  • Zitellini N, Gràcia E, Matias L, Terrinha P, Abreu MA, DeAlteriis G, Henriet JP, Dañobeitia JJ, Masson DG, Mulder T, Ramella R, Somoza L, Diez S (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth Planet Sci Lett 280(1–4):13–50

    Article  Google Scholar 

  • Zitellini N, Rovere M, Terrinha P, Chierici F, Matias L, BIGSETS, Team (2004) Neogene through Quaternary tectonic reactivation of SW Iberian Passive Margin. Pure Appl Geophys 161(3):565–587

    Article  Google Scholar 

Download references

Acknowledgments

Manuel Teixeira thanks Fundação para a Ciência e a Tecnologia (FCT) — the Portuguese Foundation for Science and Technology — for funding his Ph.D. project (SFRH/BD/110674/2015). The editor, Professor Louis N.Y. Wong and three anonymous reviewers are acknowledged for their constructive reviews. The CONDRIBER (FCT-PTDC/GEO/4430/2012) and MOWER (CTM2012-39599-C03-02) projects are gratefully acknowledged. The captain and crew of R/V Sarmiento de Gamboa are acknowledged for their assistance during the MOWER cruise. The ESRI is thanked for the provided ArcMapTM student license. The IHS is thanked for providing the Kingdom SuiteTM license. This publication is a contribution to IDL — Associated Laboratory (UIDB/GEO/50019/2020). D. Coelho, C. Ramos, A. Pinto, and C. Pinto are acknowledged for their assistance with the laboratory work. A. Mena is thanked for the provided core management support at the University of Vigo.

Funding

FCT — Fundação para a Ciência e a Tecnologia (SFRH/BD/110674/2015). CONDRIBER (FCT-PTDC/GEO/4430/2012) and MOWER (CTM2012-39599-C03-02) projects. FCT funded and supported Manuel Teixeira with a Ph.D. grant. The CONDRIBER project (FCT-PTDC/GEO/4430/2012) funded the acquisition of the gravity cores and geotechnical tests in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Teixeira.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing financial and nonfinancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, M., Viana da Fonseca, A., Cordeiro, D. et al. Geotechnical properties of Sines Contourite Drift sediments: their contribution to submarine landslide susceptibility. Bull Eng Geol Environ 81, 376 (2022). https://doi.org/10.1007/s10064-022-02873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-022-02873-y

Keywords

Navigation