Skip to main content
Log in

Tensile behaviors of frozen subgrade soil

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

A series of radial splitting tests were conducted on frozen subgrade soil to systematically study the effects of sample size, temperatures, ice contents, loading rates, and prefabricated cracks on the tensile deformation and failure behaviors. Based on extensive experimental results including testing data and photos during the whole loading process, a typical splitting load-splitting displacement model for frozen soil was established which can be employed to visually analyze the influencing mechanism for tensile deformation and failure behaviors under various loading conditions. Testing results indicate that the tensile deformation and failure behaviors of frozen samples are strongly affected by ice content, loading rate, and prefabricated cracks. The evaluations of load–displacement curve and crack propagation show diverse property features under different conditions of ice contents and loading rates. The influencing mechanism of the temperatures on the tensile strength behavior of frozen soil is analyzed in detail and the temperature effect on tensile strength is not influenced by loading rates. The crack initiation and propagation in the frozen sample are directly influenced by the prefabricated cracks and show different failure features at various inclination angles and coupling angles. Frozen subgrade soil exhibits obvious rate-dependent failure and deformation behaviors. Furthermore, an empirical formula was proposed to predict the long-term tensile strength of frozen subgrade soil and this formula is capable of giving a good description of the attenuation characteristics of tensile strength as the development of time. This research can provide useful insights into the strength mechanism for frozen subgrade soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Abdolghanizadeh K, Hosseini M, Saghafiyazdi M (2020) Effect of freezing temperature and number of freeze–thaw cycles on mode I and mode II fracture toughness of sandstone. Theor Appl Fract Mech 105:102428

    Article  Google Scholar 

  • Akagawa S, Nishisato K (2009) Tensile strength of frozen soil in the temperature range of the frozen fringe. Cold Reg Sci Technol 57(1):13–22

    Article  Google Scholar 

  • Aral İF, Boy R, Dinçer AR (2021) Effects of freeze-thawing cycles on the physical and mechanical properties of basaltic and dolomitic rocks evaluated with a decay function model. Bull Eng Geol Environ 80(4):2955–2962

    Article  Google Scholar 

  • Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291

    Article  Google Scholar 

  • Azmatch TF, Sego DC, Arenson LU, Biggar KW (2011) Tensile strength and stress–strain behaviour of Devon silt under frozen fringe conditions. Cold Reg Sci Technol 68(1–2):85–90

    Article  Google Scholar 

  • Bai R, Lai Y, Zhang M, Yu F (2018) Theory and application of a novel soil freezing characteristic curve. Appl Therm Eng 129:1106–1114

    Article  Google Scholar 

  • Batenipour H, Alfaro M, Kurz D, Graham J (2014) Deformations and ground temperatures at a road embankment in northern Canada. Can Geotech J 51(3):260–271

    Article  Google Scholar 

  • Burn CR, Smith MW (1993) Issues in Canadian permafrost research. Prog Phys Geog 17(2):156–172

    Article  Google Scholar 

  • Cheng G, Sun Z, Niu F (2008) Application of the roadbed cooling approach in Qinghai-Tibet railway engineering. Cold Reg Sci Technol 53(3):241–258

    Article  Google Scholar 

  • Christ M, Park J-B (2010) Laboratory determination of strength properties of frozen rubber–sand mixtures. Cold Reg Sci Technol 60(2):169–175

    Article  Google Scholar 

  • Darrow MM, Daanen RP, Gong W (2017) Predicting movement using internal deformation dynamics of a landslide in permafrost. Cold Reg Sci Technol 143:93–104

    Article  Google Scholar 

  • Deng Y, Li Z, Li Z, Wang J (2019) The experiment of fracture mechanics characteristics of Yellow River Ice. Cold Reg Sci Technol 168:102896

    Article  Google Scholar 

  • Dillon HB, Andersland OB (1966) Predicting unfrozen water contents in frozen soils. Can Geotech J 3(2):53–60

    Article  Google Scholar 

  • Fahimifar A, Malekpour M (2011) Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts. Bull Eng Geol Environ 71(2):269–283

    Article  Google Scholar 

  • Gao F, Wang Q, Deng H, Zhang J, Tian W, Ke B (2016) Coupled effects of chemical environments and freeze–thaw cycles on damage characteristics of red sandstone. Bull Eng Geol Environ 76(4):1481–1490

    Article  Google Scholar 

  • Girgis N, Li B, Akhtar S, Courcelles B (2020) Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils. Cold Reg Sci Technol 180:103166

    Article  Google Scholar 

  • Grechishchev S, Kazarnovsky V, Kretov V, Shuvaev A, Smolin V, Aksenov V, Sheshin Y (1999) Study of frozen cloddy soils properties as a road embankment material in permafrost regions. In: Proceedings of the International Conference on Cold Regions Engineering, pp 211–221

  • Haeri H, Sarfarazi V, Yazdani M, Shemirani AB, Hedayat A (2017) Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material. Rock Mech Rock Eng 51(1):173–185

    Article  Google Scholar 

  • Han T, Wang X, Li Z, Li D, Xing F, Han N (2020) Laboratory investigation of the mode-I fracture of sandstone caused by a combination of freeze-thaw cycles and chemical solutions. Bull Eng Geol Environ 79(7):3689–3706

    Article  Google Scholar 

  • Heeschen KU, Janocha J, Spangenberg E, Schicks JM, Giese R (2020) The impact of ice on the tensile strength of unconsolidated sand - a model for gas hydrate-bearing sands? Mar Pet Geol 122:104607

    Article  Google Scholar 

  • Hobbs DW (1964) The tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 1(3):385–396

    Article  Google Scholar 

  • Hu X-D, Wang J-T, Yu R-Z (2013) Uniaxial compressive and splitting tensile tests of artificially frozen soils in tunnel construction of Hong Kong. J Shanghai Jiaotong Univ Sci 18(6):688–692

    Article  Google Scholar 

  • Lange MA, Ahrens TJ (1983) The dynamic tensile strength of ice and ice-silicate mixtures. J Geophys Res 88(B2):1197–1208

    Article  Google Scholar 

  • Lazorenko G, Kasprzhitskii A, Khakiev Z, Yavna V (2019) Dynamic behavior and stability of soil foundation in heavy haul railway tracks: a review. Constr Build Mater 205:111–136

    Article  Google Scholar 

  • Li D, Wong LNY (2012) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287

    Article  Google Scholar 

  • Li Q, Yin T, Li X, Zhang S (2019) Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bull Eng Geol Environ 79(1):313–327

    Article  Google Scholar 

  • Li Y, Ling X, Su L, An L, Li P, Zhao Y (2018) Tensile strength of fiber reinforced soil under freeze-thaw condition. Cold Reg Sci Technol 146:53–59

    Article  Google Scholar 

  • Ma W, Wu ZW, Chang XX, Sheng Y (1997) Effects of the shear stress strength and the average normal stress on deformation of frozen soil. Prog Nat Sci 7(5):594–599

    Google Scholar 

  • Matsumura S, Miura S, Yokohama S, Kawamura S (2015) Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze–thaw sequence. Soils Found 55(1):86–98

    Article  Google Scholar 

  • Matsuoka N (2005) Temporal and spatial variations in periglacial soil movements on alpine crest slopes. Earth Surf Process Landf 30(1):41–58

    Article  Google Scholar 

  • Newman DA, Bennett DG (1990) The effect of specimen size and stress rate for the Brazilian test? A statistical analysis. Rock Mech Rock Eng 23(2):123–134

    Article  Google Scholar 

  • Peng W (1998) Tensile strength of frozen loess varying with strain rate and temperature. Chin J Geotech Eng 20(3):31–33 (In Chinese)

    Google Scholar 

  • Romanovsky VE, Osterkamp TE (2000) Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr Periglac Process 11(3):219–239

    Article  Google Scholar 

  • Shen Z, Liu Y, Peng W, Chang X (1994) Application of the radial-splitting method to determining tensile strength of frozen soils. J Glaciol Geocryol 16(03):224–231 (In Chinese)

    Google Scholar 

  • Shen Z, Peng W, Liu Y (1994) The effect of length of specimen on the in radial splitting test. J Glaciol Geocryol 16(04):327–332 (In Chinese)

    Google Scholar 

  • Shloido GA (1968) Determining the tensile strength of frozen ground. Hydrotech Constr 2(3):238–240

    Article  Google Scholar 

  • Sun J, Hu YY (1997) Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China. Int J Rock Mech Min Sci 34(3–4):306.e301-306.e313

    Google Scholar 

  • Tang L, Wang K, Jin L, Yang G, Jia H, Taoum A (2018) A resistivity model for testing unfrozen water content of frozen soil. Cold Reg Sci Technol 153:55–63

    Article  Google Scholar 

  • The Ministry of Housing and Urban-Rural Development of the People’s Republic of China. (2019) Standard for geotechnical testing method (GBT 50123-2019). Beijing: China Planning Press (In Chinese)

  • Wang D, Chen G, Jian D, Zhu J, Lin Z (2021) Shear creep behavior of red sandstone after freeze-thaw cycles considering different temperature ranges. Bull Eng Geol Environ 80(3):2349–2366

    Article  Google Scholar 

  • Xing Y, Huang B, Ning E, Zhao L, Jin F (2020) Quasi-static loading rate effects on fracture process zone development of mixed-mode (I-II) fractures in rock-like materials. Eng Fract Mech 240:107365

    Article  Google Scholar 

  • Yamamoto Y, Springman SM (2017) Three- and four-point bending tests on artificial frozen soil samples at temperatures close to 0 degrees C. Cold Reg Sci Technol 134:20–32

    Article  Google Scholar 

  • Yamamoto Y, Springman SM (2019) Triaxial stress path tests on artificially prepared analogue alpine permafrost soil. Can Geotech J 56(10):1448–1460

    Article  Google Scholar 

  • You Z, Ma Y, Wang Z, Ma J (2021) Tensile strength variation of a silty clay under different temperature and moisture conditions. Cold Reg Sci Technol 189:103314

    Article  Google Scholar 

  • Zhang F, Zhu Z, Ma W, Zhou Z, Fu T (2021) A unified viscoplastic model and strain rate–temperature equivalence of frozen soil under impact loading. J Mech Phys Solids 152:104413

    Article  Google Scholar 

  • Zhou G, Hu K, Zhao X, Wang J, Liang H, Lu G (2015) Laboratory investigation on tensile strength characteristics of warm frozen soils. Cold Reg Sci Technol 113:81–90

    Article  Google Scholar 

  • Zhou Z, Li G, Shen M, Wang Q (2022a) Dynamic responses of frozen subgrade soil exposed to freeze-thaw cycles. Soil Dyn Earthq Eng 152:107010

    Article  Google Scholar 

  • Zhou Z, Bai R, Shen M, Wang Q (2022b) The effect of overconsolidation on monotonic and cyclic behaviours of frozen subgrade soil. Transp Geotech 32:100710

    Article  Google Scholar 

  • Zhou Z, Ma W, Zhang S, Du H, Mu Y, Li G (2016a) Multiaxial creep of frozen soil. Mech Mater 95:172–191

    Article  Google Scholar 

  • Zhou Z, Ma W, Zhang S, Mu Y, Li G (2018) Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg Sci Technol 146:9–18

    Article  Google Scholar 

  • Zhou Z, Ma W, Zhang S, Mu Y, Li G (2020) Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess. Eng Geol 265:105449

    Article  Google Scholar 

  • Zhou Z, Ma W, Zhang S, Mu Y, Zhao S, Li G (2016b) Yield surface evolution for columnar ice. Results Phys 6:851–859

    Article  Google Scholar 

  • Zhu YL, Carbee DL (1986) Tensile strength of frozen silt. J Glaciol Geocryol 18(1):15–28 (In Chinese)

    Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of China (No. 41630636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Zhou, Z. & Ma, W. Tensile behaviors of frozen subgrade soil. Bull Eng Geol Environ 81, 122 (2022). https://doi.org/10.1007/s10064-022-02616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-022-02616-z

Keywords

Navigation