Statistical analyses of landslide size and spatial distribution triggered by 1990 Rudbar-Manjil (Mw 7.3) earthquake, northern Iran: revised inventory, and controlling factors

Abstract

This study is a revised inventory of landslides triggered by the Rudbar-Manjil earthquake (Mw = 7.3), 1990, obtained through the study of Komak Panah and Hafezi Moghadas (1993), interpretations of the stereoscopic aerial photos, and field data. We mapped the 223 coherent landslides with a total area of 11.3 km2 and a calculated volume of 3.8 × 108 m3 using a digital elevation model (DEM, 12.5 m) within the geographical information system (GIS) software. The correlation between landslide occurrence (size and distribution) and the controlling factors was analyzed using the bivariate model and the linear automated modeling (LINEAR) procedure in the SPSS software. Both LINEAR models of landslide volume (LV, m3) and landslide area (LA, m2) indicate the distance from the fault surface rupture is the most influencing factor on size prediction of coseismic landslides. The LA is more dependent on seismic factors, whereas the LV is on the lithology and topographic factors. The result of principal component analysis (PCA) model, using the GIS, showed that most landslides occurred in the red band (including 95% of the variance of controlling factors). Thus, the selected factors to investigate the landslide occurrence are valid and the PCA can be used to identify regions prone to coseismic landslides. The curves of landslide number density (LND, landslides/km2), landslide area percentage (LAP, landslide area/total area%), LA, and LV have a multimodal distribution (several patterns of response) by the topographic and seismic factors. It is recommended that other models be applied to better investigate the local effects of factors on the coseismic landslides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Alonso-Rodríguez A, Miranda E (2015) Assessment of building behavior under near-fault pulse-like ground motions through simplified models. Soil Dyn Earthq Eng 79:47–58. https://doi.org/10.1016/j.soildyn.2015.08.009

    Article  Google Scholar 

  2. Ambraseys NN, Melville CP (1983) A history of Persian earthquakes. (Cambridge Earth Science Series.) xvii, 219 pp. Cambridge, etc.: Cambridge University Press, 1982. £35. Bull Sch Orient Afr Stud 46(2):360–360. https://doi.org/10.1017/S0041977X00079131

    Article  Google Scholar 

  3. Archila M, Ventura CE, Liam Finn WD (2017) New insights on effects of directionality and duration of near-field ground motions on seismic response of tall buildings. Struct Design Tall Spec Build 26(11):e1363. https://doi.org/10.1002/tal.1363

    Article  Google Scholar 

  4. Bao H, Ampuero JP, Meng L, Fielding EJ, Liang C, Milner CWD, Feng T, Huang H (2019) Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat Geosci 12:200–205

    Article  Google Scholar 

  5. Berberian M (1994) Natural hazards and the first earthquake catalog of Iran, Vol. 1: historical hazards in Iran prior 1900, I.I.E.E.S. report

  6. Berberian M, Qorashi M, Jackson JA, Priestley K, Wallace T (1992) The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance. Bull Seismol Soc Am 82(4):1726–1755

    Google Scholar 

  7. Chen C-W, Iida T, Yamada R (2017) Effects of active fault types on earthquake-induced deep-seated landslides: a study of historical cases in Japan. Geomorphology 295:680–689. https://doi.org/10.1016/j.geomorph.2017.07.030

    Article  Google Scholar 

  8. Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118(3):225–238. https://doi.org/10.1016/j.geomorph.2010.01.003

    Article  Google Scholar 

  9. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8 (7), 1991–2007. doi:https://doi.org/10.5194/gmd-8-1991-2015

  10. Cui P, Guo CX, Zhou JW, Hao Mh XFG (2014) The mechanisms behind shallow failures in slopes comprised of landslide deposits. Eng Geol 180:34–44. https://doi.org/10.1016/j.enggeo.2014.04.009

    Article  Google Scholar 

  11. Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40(4):883–895. https://doi.org/10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  12. De La Ville N, Diaz AC, Ramirez D (2002) Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustain 4(2):221–229

    Article  Google Scholar 

  13. Del Gaudio V, Pierri P, Wasowski J (2003) An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bull Seismol Soc Am 93(2):557–569. https://doi.org/10.1785/0120020016

    Article  Google Scholar 

  14. Dreyfus D, Rathje EM, Jibson RW (2013) The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake. Eng Geol 163:41–54. https://doi.org/10.1016/j.enggeo.2013.05.015

    Article  Google Scholar 

  15. Gallen SF, Clark MK, Godt JW (2015) Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting. Geology 43(1):11–14. https://doi.org/10.1130/g36080.1

    Article  Google Scholar 

  16. Gao L, Wallace TC (1995) The 1990 Rudbar-Tarom Iranian earthquake sequence: evidence for slip partitioning. Journal of Geophysical Research: Solid Earth 100(B8):15317–15332. https://doi.org/10.1029/95jb00320

    Article  Google Scholar 

  17. Ghasemi H, Zare M, Fukushima Y, Koketsu K (2009) An empirical spectral ground-motion model for Iran. J Seismol 13(4):499–515. https://doi.org/10.1007/s10950-008-9143-x

    Article  Google Scholar 

  18. Gordo-Monsó C, Miranda E (2018) Significance of directivity effects during the 2011 Lorca earthquake in Spain. Bull Earthq Eng 16(7):2711–2728. https://doi.org/10.1007/s10518-017-0301-9

    Article  Google Scholar 

  19. Gorum T, Fan X, Van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133(3):152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Article  Google Scholar 

  20. Guo D, Hamada M (2013) Qualitative and quantitative analysis on landslide influential factors during Wenchuan earthquake: a case study in Wenchuan County. Eng Geol 152(1):202–209

    Google Scholar 

  21. Guo D, Hamada M, He C (2014a) An evaluation of influential factors on landslide mobility during the 2008 Wenchuan earthquake. Nat Hazards Earth Syst Sci Discuss 2(1):613–647. https://doi.org/10.1016/j.enggeo.2012.10.012

    Article  Google Scholar 

  22. Guo D, Hamada M, He C, Wang Y, Zou Y (2014b) An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 11(2):281–291. https://doi.org/10.1007/s10346-013-0444-y

    Article  Google Scholar 

  23. Guo CW, Huang YD, Yao LK, Alradi H (2017) Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi river watershed. J Mt Sci 14(10):1938–1950. https://doi.org/10.1007/s11629-016-4140-y

    Article  Google Scholar 

  24. Guthrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 29(11):1321–1339. https://doi.org/10.1002/esp.1095

    Article  Google Scholar 

  25. Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279(3):222–229. https://doi.org/10.1016/j.epsl.2009.01.005

    Article  Google Scholar 

  26. Hamzehloo H, Chander R, Sarkar I (1997) Probable role of the Sefirud Reservoir in the occurrence of the Rudbar earthquake of 1990. Bull Ind Soc Tech 34:17–25

    Google Scholar 

  27. Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Engineering Geology, 12 2(1):9–21. https://doi.org/10.1016/j.enggeo.2010.06.013

    Article  Google Scholar 

  28. Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231–234. doi:https://doi.org/10.1130/0091-7613(1997)025<023:sffamb>2.3.co;2

  29. Hovius N, Stark PC, Tsu HC, Chuan JL (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. The Journal of Geology 108(1):73–89. https://doi.org/10.1086/314387

    Article  Google Scholar 

  30. Huang RQ, Li WL (2009) Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull Eng Geol Environ 68(3):363–371. https://doi.org/10.1007/s10064-009-0207-0

    Article  Google Scholar 

  31. Jibson RW, Keefer DK (1989) Statistical analysis of factors affecting landslide distribution in the new Madrid seismic zone, Tennessee and Kentucky. Eng Geol 27(1):509–542. https://doi.org/10.1016/0013-7952(89)90044-6

    Article  Google Scholar 

  32. Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area (98–113). Retrieved from http://pubs.er.usgs.gov/publication/ofr98113

  33. Keefer DK (1984) Landslides caused by earthquakes. GSA Bull 95(4):406–421. https://doi.org/10.1130/0016-7606(1984)95&amp;amp;lt;406:LCBE&amp;amp;gt;2.0.CO;2

    Article  Google Scholar 

  34. Khodashahi M, Rahimi E, Bagheri V (2018) Earthquake-induced landslides hazard zonation of Rudbar-Manjil using CAMEL model. Geotech Geol Eng 36(2):1319–1340. https://doi.org/10.1007/s10706-017-0395-5

    Article  Google Scholar 

  35. Komak Panah A, Hafezi Moghadas N (1993) Landslide hazard zonation study in affected area by Manjil earthquake, 1990. In Manual for zonation or seismic geotechnical hazards/prepared by the Technical Committee for Earthquake Geotechnical Engineering, TC4, of the International Society for Soil Mechanics and Foundation Engineering.: [Tokyo]: Japanese Society of Soil Mechanics and Foundation Engineering, c1993

  36. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3(4):247–251

    Article  Google Scholar 

  37. Li G, West AJ, Densmore AL, Jin Z, Parker RN, Hilton RG (2014) Seismic mountain building: landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochem Geophys Geosyst 15(4):833–844. https://doi.org/10.1002/2013gc005067

    Article  Google Scholar 

  38. Li S, Xu Q, Tang M, Iqbal J, Liu J, Zhu X et al (2019) Characterizing the spatial distribution and fundamental controls of landslides in the three gorges reservoir area, China. Bull Eng Geol Environ 78(6):4275–4290. https://doi.org/10.1007/s10064-018-1404-5

    Article  Google Scholar 

  39. Liu L, Xu C, Xu X, Tian Y, Ran Y, Chen J (2015) Interactive statistical analysis of predisposing factors for earthquake-triggered landslides: a case study of the 2013 Lushan, China Ms7.0 earthquake. Environ Earth Sci 73(8):4729–4738. https://doi.org/10.1007/s12665-014-3758-8

    Article  Google Scholar 

  40. Ma SY, Xu C, Xu XW (2019) Volume expansion rates of seismic landslides and influencing factors: a case study of the 2008 Wenchuan earthquake. J Mt Sci 16(8):1731–1742. https://doi.org/10.1007/s11629-019-5479-7

    Article  Google Scholar 

  41. Mahdavifar M (2006) Analytical evaluation and design of the system (GIS) for seismic landslides hazard management in Iran. PhD thesis. International Institute of Earthquake Engineering and Seismology; 2006 [inPersian]

  42. Mahdavifar M, Memarian P (2013) Assessment of earthquake-induced landslides triggered by Roudbar-Manjil earthquake in Rostamabad(Iran) quadrangle using knowledge-based hazard analysis approach. In (pp. 769-780)

  43. Mahdavifar M, Jafari MK, Zolfaghari M (2008) Real-time generation of arias intensity and seismic landslides hazards maps using GIS. JSEE 10(2):81–90

    Google Scholar 

  44. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711. https://doi.org/10.1002/esp.1064

    Article  Google Scholar 

  45. Marc O, Hovius N, Meunier P, Gorum T, Uchida T (2016) A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. Journal of Geophysical Research: Earth Surface 121(4):640–663. https://doi.org/10.1002/2015jf003732

    Article  Google Scholar 

  46. Marc O, Meunier P, Hovius N (2017) Prediction of the area affected by earthquake-induced landsliding based on seismological parameters. Nat Hazards Earth Syst Sci 17(7):1159–1175. https://doi.org/10.5194/nhess-17-1159-2017

    Article  Google Scholar 

  47. Massey C, Townsend D, Rathje E, Allstadt KE, Lukovic B, Kaneko Y et al (2018) Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Bull Seismol Soc Am 108(3B):1630–1648. https://doi.org/10.1785/0120170305

    Article  Google Scholar 

  48. Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93:1099–1131

    Article  Google Scholar 

  49. Memarian P (2017) Development of earthquake-induced landslide hazard zonation model using Iran database and applying fuzzy logic. PhD thesis. International Institute of Earthquake Engineering and Seismology; 2017 [inPersian]

  50. Meunier P, Hovius N, Haines AJ (2007) Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett 34(20). https://doi.org/10.1029/2007gl031337

  51. Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275(3):221–232. https://doi.org/10.1016/j.epsl.2008.07.020

    Article  Google Scholar 

  52. Newmark NM (1965) Effects of earthquakes on dams and embankments. Géotechnique 15(2):139–160. https://doi.org/10.1680/geot.1965.15.2.139

    Article  Google Scholar 

  53. Parker RN, Densmore AL, Rosser NJ, De Michele M, Li Y, Huang R, Petley DN (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4(7):449–452. https://doi.org/10.1038/ngeo1154

    Article  Google Scholar 

  54. Petley DN (2008) The global occurrence of fatal landslides in 2007. Geophysical Research Abstracts, vol. 10, EGU General Assembly 2008, p 3

  55. Pradhan B, Youssef AM, Varathrajoo R (2010) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo-spatial Information Science 13(2):93–102. https://doi.org/10.1007/s11806-010-0236-7

    Article  Google Scholar 

  56. Qi S, Xu Q, Lan H, Zhang B, Liu J (2010) Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Eng Geol 116(1):95–108. https://doi.org/10.1016/j.enggeo.2010.07.011

    Article  Google Scholar 

  57. Rajabi AM, Khamehchiyan M, Mahdavifar MR, Del Gaudio V, Capolongo D (2013) A time probabilistic approach to seismic landslide hazard estimates in Iran. Soil Dyn Earthq Eng 48:25–34. https://doi.org/10.1016/j.soildyn.2012.09.005

    Article  Google Scholar 

  58. Ratner B (2012) Statistical and machine-learning data mining. Techniques for better predictive modeling and analysis of big data. 2nd ed.

  59. Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Godt JW (2018) The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301:121–138. https://doi.org/10.1016/j.geomorph.2017.01.030

    Article  Google Scholar 

  60. Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18(5):325–346

    Google Scholar 

  61. Shao C, Li Y, Lan H, Li P, Zhou R, Ding H, Deng T (2019) The role of active faults and sliding mechanism analysis of the 2017 Maoxian postseismic landslide in Sichuan, China. Bull Eng Geol Environ 78(8):5635–5651. https://doi.org/10.1007/s10064-019-01480-8

    Article  Google Scholar 

  62. Tang R, Fan X, Scaringi G, Xu Q, van Westen CJ, Ren J, Havenith H-B (2019) Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bull Eng Geol Environ 78(6):4075–4093. https://doi.org/10.1007/s10064-018-1381-8

    Article  Google Scholar 

  63. Tatar M, Hatzfeld D (2009) Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June 20 in NW Iran. Geophys J Int 176(2):529–541. https://doi.org/10.1111/j.1365-246X.2008.03976.x

    Article  Google Scholar 

  64. Tatard L, Grasso JR, Helmstetter A, Garambois S (2010) Characterization and comparison of landslide triggering in different tectonic and climatic settings. Journal of Geophysical Research: Earth Surface 115(F4). https://doi.org/10.1029/2009jf001624

  65. Tong X, Sandwell DT, Fialko Y (2010) Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS and field data. J Geophys Res 115(B04314). https://doi.org/10.1029/2009JB006625

  66. Valagussa A, Marc O, Frattini P, Crosta GB (2019) Seismic and geological controls on earthquake-induced landslide size. Earth Planet Sci Lett 506:268–281. https://doi.org/10.1016/j.epsl.2018.11.005

    Article  Google Scholar 

  67. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  68. Wang F, Fan X, Yunus AP, Siva Subramanian S, Alonso-Rodriguez A, Dai L, Huang R (2019) Coseismic landslides triggered by the 2018 Hokkaido, Japan (mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides 16(8):1551–1566. https://doi.org/10.1007/s10346-019-01187-7

    Article  Google Scholar 

  69. Weisberg S (2005) Applied linear regression, 3rd edn. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  70. Wilson RC, Keefer DK (1983) Dynamic analysis of a slope failure from the 1979 Coyote Lake, California earthquake. Seismological Society of America Bulletin 73(3):863–877

    Google Scholar 

  71. Xu C, Xu X (2012) Comment on “Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China” by Shengwen Qi, Qiang Xu, Hengxing Lan, Bing Zhang, Jianyou Liu [Engineering Geology 116 (2010) 95–108]. Eng Geol 133-134:4042. https://doi.org/10.1016/j.enggeo.2012.02.017

    Article  Google Scholar 

  72. Xu C, Xu X (2014) Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010. Nat Hazards 72(2):871–893. https://doi.org/10.1007/s11069-014-1038-2

    Article  Google Scholar 

  73. Xu C, Dai FC, Yao X (2009) Incidence number and affected area of Wenchuan earthquake-induced landslides. Science & Technology Review 27(11):79–81

    Google Scholar 

  74. Xu C, Dai F, Xu X, Lee YH (2012) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145-146:70–80. https://doi.org/10.1016/j.geomorph.2011.12.040

    Article  Google Scholar 

  75. Xu, C., Xu, X., Yao, X., & Dai, F. (2013a). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11. doi:https://doi.org/10.1007/s10346-013-0404-6

  76. Xu C, Xu X, Dai F, Wu Z, He H, Shi F, Xu S (2013b) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68(2):883–900. https://doi.org/10.1007/s11069-013-0661-7

    Article  Google Scholar 

  77. Xu C, Xu X, Pourghasemi HR, Pradhan B, Iqbal J (2014) Volume, gravitational potential energy reduction, and regional centroid position change in the wake of landslides triggered by the 14 April 2010 Yushu earthquake of China. Arab J Geosci 7(6):2129–2138. https://doi.org/10.1007/s12517-013-1020-4

    Article  Google Scholar 

  78. Xu C, Xu X, Shyu JBH (2015) Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 248:77–92. https://doi.org/10.1016/j.geomorph.2015.07.002

    Article  Google Scholar 

  79. Xu C, Xu X, Shen L, Yao Q, Tan X, Kang W, Li K (2016) Optimized volume models of earthquake-triggered landslides. Sci Rep 6(1):29797. https://doi.org/10.1038/srep29797

    Article  Google Scholar 

  80. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12. https://doi.org/10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  81. Yang H (2013) The case for being automatic: introducing the automatic linear modeling (LINEAR) procedure in SPSS statistics. Multiple Linear Regression Viewpoints 39

  82. Yassaghi A, Salari-Rad H, Kanani-Moghadam H (2005) Geomechanical evaluations of Karaj tuffs for rock tunneling in Tehran–Shomal Freeway, Iran. Eng Geol 77(1):83–98. https://doi.org/10.1016/j.enggeo.2004.08.003

    Article  Google Scholar 

  83. Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152. https://doi.org/10.1007/s10346-009-0148-5

    Article  Google Scholar 

  84. Youssef AM, Maerz NH, Hassan AM (2009) Remote sensing applications to geological problems in Egypt: case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani Area, Southern Sinai. Landslides 6(4):353. https://doi.org/10.1007/s10346-009-0158-3

    Article  Google Scholar 

  85. Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5):839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  86. Zhang, L., Chen, G., Wu, Y., & Jiang, H. (2016). Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake. Earth, Planets and Space, 68(1), 184. doi:https://doi.org/10.1186/s40623-016-0565-3

Download references

Acknowledgments

We are grateful to the Geological Survey & Mineral Explorations of Iran (GSI), for providing the Geology Map and most of the high-resolution post-earthquake and pre-earthquake aerial photographs of the study area.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Shoaei.

Additional information

Highlights

The landslides occurred in the hard rock are more than soft rocks by the 1990 Manjil-Rudbar earthquake.

The volume of landslides is less dependent on seismic parameters than the area of landslides;

The volume of landslides is more dependent on the lithology and topographic parameters.

The principal component analysis (PCA) model is effective in identifying areas prone to coseismic landslides.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaedi Vanani, A.A., Shoaei, G. & Zare, M. Statistical analyses of landslide size and spatial distribution triggered by 1990 Rudbar-Manjil (Mw 7.3) earthquake, northern Iran: revised inventory, and controlling factors. Bull Eng Geol Environ (2021). https://doi.org/10.1007/s10064-021-02106-8

Download citation

Keywords

  • Landslide size and distribution
  • Rudbar-Manjil earthquake
  • Statistical analysis
  • Controlling factors