Experimental and numerical study on the fragmentation mechanism of a single calcareous sand particle under normal compression

Abstract

The rate-dependent mechanical properties of a specific geomaterial play a crucial role in engineering design and application. However, there have been very few studies involving rate-dependent mechanical properties of calcareous sand particles. This present investigation aims to study the rate-dependent breakage behavior of calcareous sand particles experimentally and numerically. Experimental tests were conducted under various loading rates. Moreover, the discrete element method was utilized in particle crushing tests to assess the breakage sub-processes. The experimental results reveal that the particle crushing strengths conform to the Weibull distribution. As the loading rates increase, the fragmentation mode changes from primary splitting and successive breaking to severe disintegration, corresponding to the three types of axial force-displacement curves, namely, the quasi-hardening, the slight quasi-softening, and the obvious quasi-softening. The simulation results show that the fractures initiate in the vicinity of contact point between the particle and loading walls, eventually penetrating through the particle along the vertical section of the sample. A higher loading rate may lead to a greater extent of particle breakage. The findings presented in this study may advance the understanding of the rate-dependent mechanical properties of calcareous sands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abelev A, Valent P (2013) Strain-rate dependence of strength of the Gulf of Mexico soft sediments. IEEE J Ocean Eng 38(1):25–31

    Article  Google Scholar 

  2. Aghajani HF, Salehzadeh H (2015) Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf. Arab J Geosci 8(10):8197–8217

    Article  Google Scholar 

  3. Areias P, Rabczuk T (2016) A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Comput Mech 58(6):1003–1018

    Article  Google Scholar 

  4. Bolton MD, Nakata Y, Cheng YP (2008) Micro- and macro-mechanical behavior of DEM crushable materials. Géotechnique 58(6):471–480

    Article  Google Scholar 

  5. Brandes HG (2011) Simple shear behavior of calcareous and quartz sands. Geotech Geol Eng 29(1):113–126

    Article  Google Scholar 

  6. Carroll MM (1985) Mechanics of geological materials. Appl Mech Rev 38(10):1256

    Article  Google Scholar 

  7. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277

    Article  Google Scholar 

  8. Coop MR, Sorensen KK, Freitas TB et al (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54(3):157–163

    Article  Google Scholar 

  9. Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  10. Da B, Yu HF, Ma HY, Mi YS, Dou XM (2016) Experimental investigation of whole stress-strain curves of coral concrete. Constr Build Mater 122:81–89

    Article  Google Scholar 

  11. Díazrodríguez JA, Martínezvasquez JJ, Santamarina JC (2009) Strain-rate effects in Mexico City soil. J Geotech Geoenviron Eng 135(2):300–305

    Article  Google Scholar 

  12. Ergenzinger C, Seifried R, Eberhard P (2012) A discrete element model predicting the strength of ballast stones. Comput Struct 108-109:3–13

    Article  Google Scholar 

  13. Florez S, Eduardo IM (2017) Effect of fast constant loading rates on the global behavior of sand in triaxial compression. Geotech Test J 40(1):52–74

    Google Scholar 

  14. Fu R, Hu XL, Zhou B (2017) Discrete element modeling of crushable sands considering realistic particle shape effect. Comput Geotech 91:179–191

    Article  Google Scholar 

  15. Ghafghazi M, Shuttle DA, Dejong JT (2014) Particle breakage and the critical state of sand. Soils Found 54(3):451–461

    Article  Google Scholar 

  16. Giang PHH, Impe POV, Impe WFV, Menge P, Haegeman W (2017) Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation. Soil Dyn Earthq Eng 100:371–379

    Article  Google Scholar 

  17. Gong DZ, Nadolski S, Sun CB, Klein B (2018) The effect of strain rate on particle breakage characteristics. Powder Technol 339:595–605

    Article  Google Scholar 

  18. Cho Gye-chun, Dodds Jake, Santamarina J Carlos. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 2006;132(5):591-602.

  19. Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech Min Sci Geomech Abstr 3(2):89–90

    Article  Google Scholar 

  20. Huang Q, Zhou W, Ma G et al (2020) Experimental and numerical investigation of Weibullian behavior of grain crushing strength [J]. Geosci Front 11(2):401–411

    Article  Google Scholar 

  21. Kuang DM, Long ZL, Guo RQ et al (2020) Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles [J]. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2020.1725194

  22. Kwok CY, Bolton MD (2013) DEM simulations of soil creep due to particle crushing. J Geotechnique 63(16):1365–1376

    Article  Google Scholar 

  23. Lade PV, Liggio CD, Nam J (2009) Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J Geotech Geoenviron 135(7):941–953

    Article  Google Scholar 

  24. Lade PV, Nam J, Junior CDL (2010) Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand. J Geotech Geoenviron Eng 136(3):500–509

    Article  Google Scholar 

  25. Li Y T, Zhou L, Zhang Y, Cui J W. Study on long-term performance of concrete based on seawater, sea sand and coral sand. Adv Mater Res 2013;706-708(1):512-15.

  26. Lim WL, McDowell GR (2007) The importance of coordination number in using agglomerates to simulate crushable particles in the discrete element method. J Geotechnique 57(8):701–705

    Article  Google Scholar 

  27. Liu HL, Sun YF, Yang G, Chen YM (2012) A review of particle breakage characteristics of coarse aggregates. J Hohai Univ 40(4):361–369

    Google Scholar 

  28. Liu JM, Ou ZW, Wei P, Guo T, Deng W, Chen YZ (2017) Literature review of coral concrete. Arab J Sci Eng 43(4):1–13

    Google Scholar 

  29. Liu Y, Dai F, Xu NW, Zhao T, Feng P (2018) Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method. Soil Dyn Earthq Eng 105:68–82

    Article  Google Scholar 

  30. Lv YR, Liu J, Xiong ZM (2019) One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates. J Rock Mech Geotech Eng 11(01):196–205

    Article  Google Scholar 

  31. Ma G, Zhou W, Regueiro RA et al (2017) Modeling the fragmentation of rock grains using computed tomography and combined FDEM [J]. Powder Technol 308:388–397

    Article  Google Scholar 

  32. Ma LJ, Li Z, Wang MY, Wei HZ, Fan PX (2018) Effects of size and loading rate on the mechanical properties of single coral particles. Powder Technol 342:961–971

    Article  Google Scholar 

  33. Ma LJ, Li Z, Liu JG, Duan LQ, Wu JW (2019) Mechanical properties of coral concrete subjected to uniaxial dynamic compression. Constr Build Mater 199:244–255

    Article  Google Scholar 

  34. McDowell GR, Amon A (2000) The application of Weibull statistics to the fracture of soil particles. Soils Found 40(5):133–141

    Article  Google Scholar 

  35. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  36. Morsy Amr M (2019) Salem, Manal A, Elmamlouk, Hussein H. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges. Soils Dynamics and. Earthq Eng:692–709

  37. Nakata Y, Hyodo M, Hyde AFL, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82

    Article  Google Scholar 

  38. Obermayr M, Dressler K, Vrettos C, Eberhard P (2013) A bonded-particle model for cemented sand. Comput Geotech 49:299–313

    Article  Google Scholar 

  39. Omidvar M, Iskander M, Bless S (2012) Stress-strain behavior of sand at high strain rates. Int J Impact Eng 49(2):192–213

    Article  Google Scholar 

  40. Pan R, Taubin G (2016) Automatic segmentation of point clouds from multi-view reconstruction using graph-cut. Vis Comput 32(5):601–609

    Article  Google Scholar 

  41. Peerlings R, De Borst R, Brekelmans W, De Vree J, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech 15(6):937–953

    Google Scholar 

  42. Potyondy DO (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  43. Qi CZ, Wang MY, Qian QH (2009) Strain-rate effects on the strength and fragmentation size of rocks. Int J Impact Eng 36(12):1355–1364

    Article  Google Scholar 

  44. Qian JG, Gu JB et al (2017) Discrete numerical modeling of granular materials considering crushability [J]. J Mt Sci 04:151–163

    Google Scholar 

  45. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks [J]. Int J Numer Methods Eng 61(13):2316–2343

    Article  Google Scholar 

  46. Rabczuk T, Ren HL (2017) A peridynamics formulation for quasi-static fracture and contact. Eng Geol 225:42–48

    Article  Google Scholar 

  47. Rabczuk T, Zi G, Gerstenberger A, Wall W.A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int J Numer Methods Eng 2008;75(5):577–599.

  48. Rabczuk T, Zi G, Bordas S, Nguyen-xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455

    Article  Google Scholar 

  49. Ren HL, Zhuang XY, Cai YC, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Methods Eng 108:1451–1476

    Article  Google Scholar 

  50. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    Article  Google Scholar 

  51. Rorato R, Arroyo M, Andò E (2019) A Gens. Sphericity measures of sand grains, Engineering Geology. https://doi.org/10.1016/j.enggeo.2019.04.006

    Google Scholar 

  52. Safinus S, Hossain M S, Randolph M F. Comparison of stress-strain behaviour of carbon- ate and silicate sediments. Proc. 18th Int. Conf. on Soil Mechanics and Geotechnical Engineering 2013;267–70.

  53. Salehzadeh H, Procter D, Merrifield CM (2006) Medium dense non-cemented carbonate sand under reversed cyclic loading. Int J Civ Eng 4:54–63

    Google Scholar 

  54. Salem M, Elmamlouk H, Agaiby S (2013) Static and cyclic behavior of North Coast calcareous sand in Egypt. Soil Dyn Earthq Eng 55(12):83–91

    Article  Google Scholar 

  55. Shahnazari H, Rezvani R (2013) Effective parameters for the particle breakage of calcareous sands: an experimental study. Eng Geol 159(9):98–105

    Article  Google Scholar 

  56. Shahnazari H, Jafarian Y, Tutunchian MA (2016) Rezvani, R. Undrained cyclic and monotonic behavior of Hormuz calcareous sand using hollow cylinder simple shear tests. Int J Civil Eng 14(4):209–219

    Article  Google Scholar 

  57. Shan PF, Lai XP (2019) Mesoscopic structure PFC∼2D model of soil rock mixture based on digital image. J Vis Commun Image Represent:407–415

  58. Shen WG, Zhao T, Crosta GB, Dai F (2017) Analysis of impact-induced rock fragmentation using a discrete element approach. Int J Rock Mech Min Sci 98:33–38

    Article  Google Scholar 

  59. Todisco MC, Wang W, Coop MR et al (2017) Multiple contact compression tests on sand particles [J]. Soils Found 57(1):126–140

    Article  Google Scholar 

  60. Wang W, Coop MR (2016) An investigation of breakage behaviour of single sand particles using a high-speed microscope camera [J]. Géotechnique 66(12):984–998

    Article  Google Scholar 

  61. Wang W, Coop MR (2018) Breakage behaviour of sand particles in point-load compression [J]. Géotechnique Lett 8(1):61–65

    Article  Google Scholar 

  62. Wang XZ, Jiao YY, Wang R, Hu JM, Meng QS, Tan FY (2011) Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Eng Geol 20(1-4):40–47

    Article  Google Scholar 

  63. Wang Y, Ren Y, Yang Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea. Mar Georesour Geotechnol, 2017a:1064119X.2017.1279245.

  64. Wang XZ, Wang X, Chen JW, Wang R, Hu MJ, Meng QS (2017b) Experimental study on permeability characteristics of calcareous soil. Bull Eng Geol Environ 77(4):1753–1762

    Article  Google Scholar 

  65. Wang B, Martin U, Rapp S (2017c) Discrete element modeling of the single-particle crushing test for ballast stones. Comput Geotech 88:61–73

    Article  Google Scholar 

  66. Wu K, Pizette P, Becquart F, Rémond S, Abriak N, Xu WY et al (2017) Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition. Adv Powder Technol 28(1):155–466

    Article  Google Scholar 

  67. Xiao Y, Sun ZC, Desai CS, Meng MQ (2019) Strength and surviving probability in grain crushing under acidic erosion and compression. Int J Geomech 19(11):04019123

    Article  Google Scholar 

  68. Xiao Y, Meng M, Daouadji A et al (2020) Effects of particle size on crushing and deformation behaviors of rockfill materials [J]. Geosci Front 11(2):375–388

    Article  Google Scholar 

  69. Yang S, Zhu YH, Liu HL, Li A, Ge HY (2017) Macro-meso effects of gradation and particle morphology on the compressibility characteristics of calcareous sand. Bull Eng Geol Environ 9:1–9

    Google Scholar 

  70. Yu F (2017) Characteristics of particle breakage of sand in triaxial shear. Powder Technol 320:656–667

    Article  Google Scholar 

  71. Yu SS, Lu YB, Cai Y (2013) The strain-rate effect of engineering materials and its unified model. Latin Am J Solids Struct 10(4):833–844

    Article  Google Scholar 

  72. Zhang J, Zhang B (2018) Fractal pattern of particle crushing of granular geomaterials during one-dimensional compression. Adv Civil Eng:1–14

  73. Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture. Int J Rock Mech Min Sci 37(5):745–762

    Article  Google Scholar 

  74. Zhao T (2017) Crosta, G B, Utili S, De Blasio F Y. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses. J. J Geophys Res Earth Surf 122(3):678–695

    Article  Google Scholar 

  75. Zhao YX, Liu SM, Zhao GF, Elsworth D, Jiang YD, Han JL (2014) Failure mechanisms in coal: dependence on strain rate and microstructure. J. Geophys. Res. Solid Earth 119:6924–6935

    Article  Google Scholar 

  76. Zhou S W, Zhuang X, Rabczuk, T A Phase-field modeling approach of fracture propagation in poroelastic media Eng Geol 2018, 240: 189-203.

  77. Zhou B, Wang JF, Wang HB (2014) A new probabilistic approach for predicting particle crushing in one-dimensional compression of granular soil. Soils Found 54(4):833–844

    Article  Google Scholar 

  78. Zhou W, Yang LF, Ma G, Chang XL, Lai ZQ, Xu K (2016) DEM analysis of the size effects on the behavior of crushable granular materials. Granul Matter 18(3):1–11

    Article  Google Scholar 

  79. Zhou HJ, Ma G, Yuan W et al (2017) Size effect on the crushing strengths of rock particles [J]. Rock Soil Mech 38(8):2425–2433

    Google Scholar 

  80. Zhou S W, Zhuang X Y, Zhu H H., Rabczuk T. Phase field modelling of crack propagation, branching and coalescence in rocks. 2018a, 2018, 96:174-192.

  81. Zhou S W., Rabczuk T., Zhuang X Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw 2018b,122:31-49.

  82. Zhou SW, Zhuang XY, Rabczuk T (2019a) Phase field modeling of brittle compressive-shear fractures in rock-like materials: a new driving force and a hybrid formulation. Comput Methods Appl Mech Eng 355:729–752

    Article  Google Scholar 

  83. Zhou SW, Zhuang XY, Rabczuk T (2019b) Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput Methods Appl Mech Eng 350:169–198

    Article  Google Scholar 

  84. Zhu CQ, Wang XZ, Wang R, Chen HY, Meng QS (2014) Experimental microscopic study of inner pores of calcareous sand. Mater Res Innov 18(S2):207–214

    Google Scholar 

  85. Zingg T (1935) Beitrag zur schotteranalyse. Schweiz Mineral Petrogr Mitt 15:52–56

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grants No. 51971188 and 51071134) and the Degree & Postgraduate Education Reform Project of Hunan Province (Grants No. CX20190493).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi-lin Long.

Supplementary Information

ESM 1

(XLSX 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuang, Dm., Long, Zl., Guo, Rq. et al. Experimental and numerical study on the fragmentation mechanism of a single calcareous sand particle under normal compression. Bull Eng Geol Environ (2021). https://doi.org/10.1007/s10064-020-02099-w

Download citation

Keywords

  • Particle breakage
  • Calcareous sand
  • Loading rate
  • Discrete element method