Skip to main content
Log in

Engineering properties of dredged sediments as a raw resource for fired bricks

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In the last decades, the amount of dredged sediments (DS) increased in France harbours. Dredged sediments consist of fine soil collected from the deepening, broadening and maintaining of public waterways. The present study reports the investigation of the beneficial reuse of dredged sediments collected from Le Havre (France) harbour as fired material for sustainability requirements. The main challenge is the use of untreated dredged sediments from land deposit of the Seine estuary and port areas as building material, especially for fired bricks manufacture. The chemical, mineralogical and particle size compositions of the raw material were assessed using X-ray fluorescence (XRF), X-ray diffraction (XRD) and laser particle sizer, respectively. The results indicate that the main oxide components are SiO2 and CaO3, while quartz and calcite are the main mineral phases. Lesser amounts of feldspar, chlorite, kaolinite, muscovite and halite were also determined. The physical properties of the raw clay material, including plasticity, organic content and salinity, were investigated in order to assess the product suitability as building material. Ceramic properties such as linear shrinkage, water absorption, bending strength and mineral neo-formations were also investigated in fired bricks at temperatures ranging from 700 to 1000 °C. A high mechanical strength has been obtained at a temperature of 900 °C. The use of ternary diagrams indicates that the raw material falls inside the industrial domain, and ceramic tests show that the raw material could be used in brick making because of its firing behaviour and mechanical resistance. As regards environment sustainability, chemical analysis reveals that the levels of metal traces from leaching tests remain low and within regulatory limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abriak NE, Mamindy-Pajany Y, Khezami I, Achour R, Zentar R, Benzerzour M (2014) Guide méthodologique valorisation des sédiments de dragage en aménagements paysager. CD2E, ed.

  • Achour R, Abriak NE, Zentar R, Rivard P, Gregoire P (2014) Valorization of unauthorized sea disposal dredged sediments as a road foundation material. Environ Technol 35:16

    Article  Google Scholar 

  • Albani A.D, Brown G.A, (1976). Geological contribution to environmental management of coastal lagoons at gosford, new south wales (AUSTRALIA). Bulletin of the International Association of engineering geology. N°14, 89–104 KREFELD

  • Alzieu C (1999) Dragages et environnement marin: état des connaissances. Plouzané, Ministère de l’aménagement du territoire et de l’environnement. Rapport, In IFREMER https://archimer.ifremer.fr/doc/00000/1040/

    Google Scholar 

  • Aeslina A K, Mohajerani A, (2011) Bricks: an excellent building material for recycling wastes- a review. Proceedings of the IASTED International Conference. July 4–6 Calgary AB Canada Environmental Management and Engineering

  • Agostini F, Skoczylas F, Lafhaj Z (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cement Concr Compos 29(4):270–278

    Article  Google Scholar 

  • American Sociaty for Testing and Material (ASTM), (2003) Standards test methods for sampling and testing bricks and structural clay tile. ASTM C67–03 ASTM: West Conshohocken USA

  • Arrêté du 14 juin 2000 relatif aux niveaux de référence a` prendre en compte lors d’une analyse de sédiments marins ou estuariens présents en milieu naturel ou portuaire. NOR: ATEE0090254A, J.O. Numéro 184: 10 [in French]

  • ASTM Standard C373–72, ASTM, Philadelphia PA, (2006) Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products

  • Azzouz H, Alouani R, Tlig S (2011) Mineralogical characterization of ceramic tiles prepared by a mixture of cretaceous and Mio-Pliocene clays from Tunisia: factory and laboratory product. Ceram Soc Jpn 119:93–100

    Article  Google Scholar 

  • Baccour H, Medhioub M, Jamoussi F, Mhiri T (2009) Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J Mater Process Technol 209:2812–2817

    Article  Google Scholar 

  • Bernstein AG, Bonsembiante E, Brusatin G, Calzolari G, Colombo P, Dall’Igna R, Hreglich S, Scarinci G (2002) Inertization of hazardous dredging spoils. Waste Manag 22:865–869

    Article  Google Scholar 

  • Brindley GW, (1980) Quantitative X-ray mineral analysis of clays. In: Brown G (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5. Mineralogical Society, London, pp. 411–438

  • Brownell WE (1976) Structural clay products. Springer-Verlag, Wien-New York

    Book  Google Scholar 

  • Carretero MI, Dondi M, Fabbri B, Raimondo M (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non- calcareous illitic–chloritic clays. Appl Clay Sci 20:301–306

    Article  Google Scholar 

  • Çelik A, Kadir S, Kapur S, Zorlu K, Akça E, Ee A, Cebeci Z (2019) The effect of high temperature minerals and microstructure on the compressive strength of bricks. Appl Clay Sci 169:91–101

    Article  Google Scholar 

  • Chiang KY, Chien KL, Hwang SJ (2008) Study on the characteristics of building bricks produced from reservoir sediment. J Hazard Mater 159:499–504

    Article  Google Scholar 

  • Dauvin JC, Desroy N, Janson AL, Vallet C, Duhamel S (2006) Recent changes in estuarine benthicand suprabenthic communities resulting from the development of harbour infrastructure. Marine Pollution Bulletin Volume 53:80–90

  • Dondi M, Marsigli M, Venturi L (1999) Firing behavior of Italian clays used in brick and roofing tile production. L’industria dei laterizi 54:382–394

    Google Scholar 

  • Dondi M, Fabbri B, Guarini G, Marsigli M, Mingazzini C (1997) Soluble salts and efflorescence in structural clay products: a scheme to predict the risk of efflorescence. Bol Soc Esp Ceram 36:619–629

    Google Scholar 

  • Dondi M, Raimondo M, Zanelli C (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci 96:91–109

    Article  Google Scholar 

  • Dondi M, Guarini G, Ligas P, Palomba M, Raimondo M (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the tresnuraghes mining district (Western Sardinia, Italy). Appl Clay Sci 18:145–155

    Article  Google Scholar 

  • Dondi M, Mazzanti F, Principi P, Raimondo M, Zanarini G (2004) Thermal conductivity of clay bricks. J Mater Civ Eng 16:8–14

    Article  Google Scholar 

  • Dondi M, Fabbri B, Guarini G (1998) Grain-size distribution of Italian raw materials for building clay products a reappraisal of the Winkler diagram. Clay Miner 33:435–442

    Article  Google Scholar 

  • Dubois V, Zentar R, Abriak NE, Grégoire P (2011) Fine sediments as a granular source for civil engineering. Eur J Environl and Civil Eng 15:137–166

    Article  Google Scholar 

  • Escalera E, Tegman R, Antti ML, Odén M (2014) High temperature phase evolution of Bolivian kaolinitic–illitic clays heated to 1250 °C. Appl Clay Sci 101:100–105

    Article  Google Scholar 

  • Fiori C, Fabbri B, Donati G, Venturi I (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Appl Clay Sci 4:461–473

    Article  Google Scholar 

  • FFTB , (2016) Rapport ‘ L’industrie de la terre cuite en chiffres statistiques

  • ISO 10545–4 , (2004) Ceramic tiles. Part 4: Determination of modulus of rupture and breaking strength. edition 2

  • ISO 13006, (1998) Ceramic tiles. Definitions, classification, characteristics and marking. Edition 1

  • Hamer K, Karius V (2002) Brick production with dredged harbour sediments. An industrial-scale experiment. Waste Manag 22:521–530

    Article  Google Scholar 

  • Haurine F, Cojan I, Bruneaux MA (2016) Development of an industrial mineralogical framework to evaluate mixtures from reservoir sediments for recovery by the heavy clay industry: application of the durance system (France). Appl Clay Sci 13:508–517

    Article  Google Scholar 

  • Holtz RD, Kovacs WD (1987) An introduction to geotechnical engineering. Prentice-Hall, Englewood Cliffs, pp 77–107

    Google Scholar 

  • Holtzapffel T , (1985) Les minéraux argileux préparation analyse diffractométrique et détermination. Soc Géol Du Nord, publication n°12, pp136

  • Joce, (2003) Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Reference: 2003/33/EC. Official Journal of European Communities No. L11, 16: 27–49

  • Jordán MM, Boix A, Sanfeliu T, De La Fuente C (1999) Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Appl Clay Sci 14:225–234

    Article  Google Scholar 

  • Jouenne CA, (1984) Traité de céramiques et de matériaux minéraux. Ed. Septima, Paris, pp. 620

  • Kornmann M (2009) Matériaux de terre cuite matières de base et fabrication. Techniques de l'Ingénieur pp 29

  • Lafhaj Z, Smara M, Agostini F, Boucard L, Skoczylas F, Depelsenaire G (2008) Polluted river sediments from the north region of France: treatment with Novosol process and valorization in clay bricks. Constr Build Mater 22:755–762

  • Lee CR , (2000) Reclamation and beneficial use of contaminated dredged material: implementation guidance for select options. DOER (the dredging operations and environmental research) technical notes collection (TN DOER C-12). U.S. Army Engineer Research and Development Center, Vicksburg, MS.

  • Mannino I, Soriani S, Zanetto G, (2002) Management of port dredged material: an environmental–political issue, the changing coast, EUROCOAST/ EUCC, Porto, Portugal, EUROCOAST, Portugal

  • Domingo M,, Aparicio P, Galán E (2019) Time evolution of the mineral carbonation of ceramic bricks in a simulated pilot plant using a common clay as sealing material at superficial conditions. Appl Clay Sci 180:105–191

  • Mckinley JD, Thomas HR, Williams KP, Reid JM (2001) Chemical analysis of contaminat-ed soil strengthened by the additionof lime. Eng Geol 60(1–4):181–192

    Article  Google Scholar 

  • Mesrar L, Benamar A, Jabrane R (2020) Study of Taza’s Miocene marl applications in heavy clay industry. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-020-01732-y

  • Nabawy B-S, Elgendy N-T.H, Gazia MT, (2019) Mineralogic and diagenetic controls on reservoir qualityof Paleozoic sandstones, Gebel El-Zeit, north EasternDesert, Egypt. Nat Resources Research

  • Ndiba P, Axe L, Boonfueng T (2008) Heavy metal immobilization through phosphate and thermal treatment of dredged sediments. Environ Sci Technol 42:920–926

    Article  Google Scholar 

  • OSPAR, (1998) Décision 98/249/CE du conseil. JO L 104 du 03/04/1998

  • Oti JE, Kinuthia JM, Bai J (2009) Engineering properties of unfired clay masonrybricks. Eng Geol 107:130–139

    Article  Google Scholar 

  • Rashed M.A, (1991) Engineering-geological properties of Pliocene argillaceous sediments of the WADI EL- NATRUN area (EGYPT). Bulletin of the International Association of engineering geology. N°44. Paris 1991

  • Reed JS (1995) Principles of ceramic processing, 2nd edn. Wiley, NewYork, p 688

  • Romero M, Andrés A, Alonso R, Viguri J, Ma Rincón J (2008) Sintering behaviour of ceramic bodies from contaminated marine sediments. Ceram Int 34:1917–1924

    Article  Google Scholar 

  • Samara M, Lafhaj Y, Chapiseau C (2009) Valorization of stabilized river sediments in fired clay bricks: factory scale experiment. J Hazard Mater 163:701–710

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158

    Article  Google Scholar 

  • Strazzera S, Dondi M, Marsigli M (1997) Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Appl Clay Sci 12:247–266

    Article  Google Scholar 

  • Torres P, Manjate RS, Fernandes HR, Olhero S.M, Ferreira JMF, (2009) Incorporation of river silt in ceramic tiles and bricks. Ind Ceram 1 : 5–12

  • Trindade M, Dias M, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve. Portugal Appl Clay Sci 42:345–355

    Article  Google Scholar 

  • Trindade M, Dias M, Coroado J (2010) Firing tests on clay-rich raw materials from then Algarve basin (southern Portugal): study of mineral transformations with temperature. Clay Clay Miner 58:188–204

    Article  Google Scholar 

  • Van Der Merwe DH (1964) Prediction of heave from the plasticity index and percentage of clay fraction of soils. Trans South Afr Inst Civil Eng 6:103–107

  • Wooseok S, Young-Kee K (2017) Stabilization characteristics of metal ions in marine-contaminated sediments by recycled aggregate. J Soils and Sed 17:1806–1814

    Article  Google Scholar 

  • Winkler HGF (1954) Importance de la distribution de taille des particules et les argiles céramiques pour les produits de production. DKG 31:337–343

    Google Scholar 

  • Yong J, Qing Y, Yu H, Dong W, Xiaolei L,(2018) Introduction to the thematic set of papers on: marine engineering geology. Bulletin of engineering geology and the environment. N° 77:893–895

  • Yozzo D, Wilber P, Will R (2004) Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York–New Jersey Harbor. Environ Manag 73:39–52

    Google Scholar 

  • Zantar R, Abriak N-E, Dubois V (2009) Effects of salts and organic matter on Atterberg limits of dredged marine sediments. Appl Clay Sci 42:391–397

Download references

Acknowledgements

The authors would like to thank the anonymous referee and the editor who helped to improve this work. Many thank also go to  Dr Mohamed Gouiza for his proofreading and his advice. Authors gratefully acknowledge funders of SEDIBRIC project for their support, namely ADEME and Region Normandie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laila Mesrar.

Supplementary Information

ESM 1

(XRDML 34 kb)

ESM 2

(XY 142 kb)

ESM 3

(XRDML 34 kb)

ESM 4

(XY 142 kb)

ESM 5

(XRDML 12 kb)

ESM 6

(XY 31 kb)

ESM 7

(XRDML 34 kb)

ESM 8

(XY 142 kb)

ESM 9

(XRDML 34 kb)

ESM 10

(XY 142 kb)

ESM 11

(XRDML 34 kb)

ESM 12

(XY 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesrar, L., Benamar, A., Duchemin, B. et al. Engineering properties of dredged sediments as a raw resource for fired bricks. Bull Eng Geol Environ 80, 2643–2658 (2021). https://doi.org/10.1007/s10064-020-02068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-02068-3

Keywords

Navigation