Skip to main content
Log in

Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions-case study

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Underground mining negatively impacts the rock mass and land surface, as well as the objects located on it. One of the forms of such impact are linear discontinuous deformations, which presently in Polish Upper Silesian Basin conditions are more and more often accompanied by underground mining. Discontinuous deformations of mining origin not always arise on the surface, resulting from the occurrence of unfavorable geological and mining factors, and create different forms, mainly ground steps, cracks, and fissures. Presented in this article results of the research concern the problem of the occurrence of linear discontinuous deformations in the area of the greatest Polish hard coal deposit, Upper Silesian Basin, where several unfavorable factors triggered the system of linear discontinuous deformations in the shape of ground steps. Ground steps caused several damages to building objects, small architecture elements, and roads in surrounding area. One of the most important objects exposed to damage threat here is an old historic church. Ground steps occurred as a joined effect of underground mining influences together with impact of fault zones located close to the church and probably activated by mining works. In the paper, mining and geological conditions have been discussed, that led to arising of discontinuous deformations on the surface. Apart from description of mentioned factors, detailed calculations were carried out aimed at recognition of probable distribution on the surface of subsidence, horizontal displacement, and horizontal strain around the church. Their contribution to ground steps creation process has been discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bell FG, Fox RM (1998) Ground treatment and foundations above discontinuous rock masses affected by mining subsidence. Min Eng 148(327):278–283

    Google Scholar 

  • Bell FG, Stacey TR, Genske DD (2000) Mining subsidence and its effect on the environment: some differing examples. Environ Geol 40(1–2):135–152. https://doi.org/10.1007/s002540000140

  • Białek J (1991) The description of transient phase of mining area subsidence with taking into account the asymmetry of final influences. Research Journal of Silesian University of Technology, Mining series, Issue l94 (in Polish), DOI: https://doi.org/10.1016/0022-1759(91)90089-x

  • Burbey T (2002) The influence of faults in basin-fill deposits on land subsidence. Las Vegas Valley, Nevada, USA. Hydrogeol J 10(5):525–538. https://doi.org/10.1007/s10040-002-0215-7

    Article  Google Scholar 

  • Chudek M (2010) Mechanika górotworu z podstawami zarządzania ochroną środowiska w obszarach górniczych i pogórniczych. Publ. House of Silesian Univ. of Technology (in Polish)

  • Chudek M, Janusz W, Zych J (1988) Studium dotyczące rozpoznania tworzenia się i prognozowania deformacji nieciągłych pod wpływem podziemnej eksploatacji złóż. Res J Silesian Univ Technol Min series, Issue 41 (in Polish)

  • Dolezalova H, Kajzar V, Soucek K, Stas L (2010) Evaluation of vertical and horizontal movements in the subsidence depression near Karvina. Acta Geodyn Geomater 7(3):355–360

    Google Scholar 

  • Donnelly LJ (2000) Reactivation of geological faults during mining subsidence from 1859 to 2000 and beyond. Inst Min Metallurgy Trans Section A: Mining Technology 109(Sept/Dec):A179–A190

    Google Scholar 

  • Donnelly LJ (2009) A review of international cases of fault reactivation during mining subsidence and fluid abstraction. Q J Eng Geol Hydrogeol 42(1):73–94. https://doi.org/10.1144/1470-9236/07-017

    Article  Google Scholar 

  • Donnelly LJ, Reddish DJ (1994) The development of surface steps during mining subsidence: “Not due to fault reactivation”. Eng Geol 36(3-4):243–255. https://doi.org/10.1016/0013-7952(94)90006-X

    Article  Google Scholar 

  • Donnelly LJ, Culshaw MG, Bell FG (2008) Longwall mining-induced fault reactivation and delayed subsidence ground movement in British coal fields. Q J Eng Geol Hydrogeol 41:301–314. https://doi.org/10.1144/1470-9236/07-215

    Article  Google Scholar 

  • Hellewell EG (1988) The influence of faulting on ground movements due to coal mining. The UK and European experience. Min Eng London 147(316):334–337

    Google Scholar 

  • Jeleński A, Jędrzejec E (1994) Prognozowanie wpływów eksploatacji górniczej w rejonie dyslokacji tektonicznych Przegląd Górniczy nr 3/1994 (in Polish)

  • Jiang L, Wang P, Zhang P, Zheng P, Xu B (2017) Numerical analysis of the effects induced by normal faults and dip angles on rock bursts. C R – Mecanique 345(10):690–705. https://doi.org/10.1016/j.crme.2017.06.009

    Article  Google Scholar 

  • Knothe S (1953) The equation of finally formed profile of subsidence trough. Cracow, Arch Min Metallurgy 1(l):22–38

    Google Scholar 

  • Kowalski A, Kotyrba A (2009) Linear discontinuous deformation of A4 highway within mining area Halemba. Mineral Resour Manag 25(3):303–317

    Google Scholar 

  • Kratzsch H (1983) Mining subsidence engineering. Springer-Verlag

  • Kwaśniewski M, Wang A (1994) Symulacja komputerowa eksploatacji węgla systemem ścianowym z zawałem stropu, II. Zachowanie się uskoków poddanych wpływom eksploatacji. Res J Silesian Univ Technol Min Series, Issue 221 (in Polish)

  • Kwiatek J (1997) On rheological aspects of the threat of building constructions located in mining areas. Sci Works Central Min Instit, Volume 827 (in Polish)

  • Lee A J (1965) The effects of faulting on mining subsidence. Min Eng, Volume 125

  • Orwat J, Mielimąka R (2015) The Comparison of Measured Deformation Indicators of Mining Area with Theoretical Values Calculated Using Knothe’s Formulas. Proceedings of the International conference on numerical analysis and applied mathematics (ICNAAM-2015). Book Series: AIP Conference Proceedings Volume 1738, Issue 1, Article Number: UNSP 080014, https://doi.org/10.1063/1.4951849

  • Ścigała R (2013a) The identification of parameters of theories used for prognoses of post mining deformations by means of present software. Arch Min Sci 58(4):1347–1357. https://doi.org/10.2478/amsc-2013-0093

    Article  Google Scholar 

  • Ścigała R. (2013b) Wpływ tektoniki złoża na rozkład deformacji terenu górniczego. Publ. House of Silesian Univ. of Technology (in Polish)

  • Sidorenko AA, Ivanov VV, Sidorenko SA (2019) Numerical simulation of rock massif stress state at normal fault at underground longwall coal mining. Int J Civ Eng Tech 10(1):844–851

    Google Scholar 

  • Strzałkowski P (2010) Zarys ochrony terenów górniczych. Publ House of Silesian Univ Technology (in Polish)

  • Strzałkowski P (2019) Sinkhole formation hazard assessment. Environ Earth Sci 78(10):9. https://doi.org/10.1007/s12665-018-8002-5

    Article  Google Scholar 

  • Szafulera K (2017) Liniowa deformacja nieciągła powierzchni w rejonie niekorzystnych warunków geologiczno - górniczych. Wiadomości górnicze nr 6 (in Polish)

  • Tyrała A (1979) Wpływ uskoków tektonicznych na zaburzenia obniżeń powierzchni wywołanych przez eksploatację górniczą. Phd thesis, unpublished (in Polish), DOI: https://doi.org/10.1136/adc.54.10.787

  • Whittaker BN, Reddish DJ (1989) Subsidence: occurrence, prediction and control. Elsevier, Amsterdam. https://doi.org/10.1016/0309-1651(89)90018-0

    Book  Google Scholar 

  • Xie H, Yu G, Yu L, Zhou H (1998) The influence of proximate fault morphology on ground subsidence due to extraction. Int J Rock Mech Min Sci 35(8):1107–1111. https://doi.org/10.1016/S0148-9062(98)00161-2

    Article  Google Scholar 

  • Zhang H, Weilin Z (1995) Calculation of surface movement incurred by fault. J China Coal Soc 20(2):163–166

    Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the Silesian University of Technology, Poland, for providing all the facilities to perform the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Szafulera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ścigała, R., Szafulera, K. Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions-case study. Bull Eng Geol Environ 79, 2059–2068 (2020). https://doi.org/10.1007/s10064-019-01681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01681-1

Keywords

Navigation